
Jekyll theme for
documentation — mydoc
product
version 6.0

Last generated: June 23, 2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

© 2022 CityTeam Ministries. This is a boilerplate copyright statement... All rights
reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or
other electronic or mechanical methods, without the prior written permission of
the publisher, except in the case of brief quotations embodied in critical reviews
and certain other noncommercial uses permitted by copyright law.

Table of Contents
Overview

Get started ... 3

Introduction .. 17

Supported features .. 18

About the theme author ... 23

Support... 24

Release Notes
6.0 Release notes... 25

5.0 Release notes... 27

Installation
About Ruby, Gems, Bundler, etc. .. 29

Install Jekyll on Mac ... 37

Install Jekyll on Windows ... 42

Authoring
Pages ... 45

Posts .. 52

Lists .. 54

Conditional logic... 58

Content reuse... 63

Collections.. 65

WebStorm editor tips ... 67

Atom editor tips.. 71

Navigation
Sidebar navigation.. 72

YAML tutorial in the context of Jekyll... 75

Tags.. 86

Series.. 92

Formatting
Tooltips... 95

Alerts .. 96

Jekyll theme for documentation — mydoc product User Guide PDF last generated: June 23, 2022

youremail@domain.com i

Icons... 104

Images.. 111

Code samples .. 116

Labels ... 117

Links ... 118

Navtabs .. 119

Tables... 123

Syntax highlighting ... 127

Workflow maps .. 130

Handling reviews
Commenting on files .. 134

Publishing
Build arguments ... 137

Themes... 140

Generating PDFs .. 141

Help APIs and UI tooltips ... 154

Search configuration .. 166

iTerm profiles.. 170

Pushing builds to server... 172

Publishing on Github Pages... 173

Special layouts
Knowledge-base layout.. 176

Glossary layout... 179

FAQ layout.. 182

Shuffle layout.. 183

Troubleshooting
Troubleshooting ... 186

Jekyll theme for documentation — mydoc product User Guide PDF last generated: June 23, 2022

youremail@domain.com ii

Getting started with the Documentation
Theme for Jekyll

Summary: These brief instructions will help you get started quickly
with the theme. The other topics in this help provide additional
information and detail about working with other aspects of this theme
and Jekyll.

 Note: If you’re cloning this theme, you’re probably writing documentation
of some kind. I have a blog on technical writing here called I’d Rather Be
Writing . If you’d like to stay updated with the latest trends, best practices,
and other methods for writing documentation, consider subscribing . I also
have a site on writing API documentation .

Build the Theme
Follow these instructions to build the theme.

1. Download the theme

First, download or clone the theme from the Github repo . Most likely you won’t be
pulling in updates once you start customizing the theme, so downloading the
theme (instead of cloning it) probably makes the most sense. In Github, click the
Clone or download button, and then click Download ZIP.

2. Install Jekyll

If you’ve never installed or run a Jekyll site locally on your computer, follow these
instructions to install Jekyll:

• Install Jekyll on Mac (page 37)

• Install Jekyll on Windows (page 42)

3. Install Bundler

In case you haven’t installed Bundler, install it:

gem install bundler

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 3

http://idratherbewriting.com/
http://idratherbewriting.com/
https://tinyletter.com/tomjoht
http://idratherbewriting.com/learnapidoc
https://github.com/tomjoht/documentation-theme-jekyll

You’ll want Bundler to make sure all the Ruby gems needed work well with your
project. Bundler sorts out dependencies and installs missing gems or matches up
gems with the right versions based on gem dependencies.

4. Option 1: Build the Theme (without the github-pages gem)

Use this option if you’re not planning to publish your Jekyll site using Github
Pages .

Bundler’s Gemfile specifies how project dependencies are managed. Although
this project includes a Gemfile, this theme doesn’t have any dependencies beyond
core Jekyll. The Gemfile is used to list gems needed for publishing on Github
Pages. If you’re not planning to have Github Pages build your Jekyll project,
delete these two files from the theme’s root directory:

• Gemfile

• Gemfile.lock

If you’ve never run Jekyll on your computer (you can check with jekyll --

version), you may need to install the jekyll gem:

gem install jekyll

Now run jekyll serve (first change directories (cd) to where you downloaded the
project):

jekyll serve

4. Option 2: Build the Theme (with the github-pages gem)

If you are in fact publishing on Github Pages, leave the Gemfile and Gemfile.lock
files in the theme.The Gemfile tells Jekyll to use the github-pages gem. However,
note that you cannot use the normal jekyll serve command with this gem
due to dependency conflicts between the latest version of Jekyll and Github
Pages (which are noted briefly here).

You need Bundler to resolve these dependency conflicts. Use Bundler to install all
the needed Ruby gems:

bundle update

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 4

http://bundler.io/
https://pages.github.com/
https://pages.github.com/
https://help.github.com/articles/setting-up-your-github-pages-site-locally-with-jekyll/

Then always use this command to build Jekyll:

bundle exec jekyll serve

If you want to shorten this long command, you can put this code in a file such as
jekyll.sh (on a Mac) and then simply type . jekyll.sh to build Jekyll.

Running the site in Docker
You can also use Docker to directly build and run the site on your local machine.
Just clone the repo and run the following from your working dir:

docker-compose build --no-cache && docker-compose up

The site should now be running at http://localhost:4000/ .

This is perhaps the easiest way to see how your site would actually look.

Configure the sidebar
There are several products in this theme. Each product uses a different sidebar.
This is the essence of what makes this theme unique – different sidebars for
different product documentation. The idea is that when users are reading
documentation for a specific product, the sidebar navigation should be specific to
that product. (You can read more of my thoughts on why multiple sidebars are
important in this blog post .)

The top navigation usually remains the same, because it allows users to navigate
across products. But the sidebar navigation adapts to the product.

In each page’s frontmatter, you must specify the sidebar you want that page to
use. Here’s an example of the page frontmatter showing the sidebar property:

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 5

http://localhost:4000/
http://idratherbewriting.com/2016/03/23/release-of-documentation-theme-for-jekyll-50/

title: Alerts
tags: [formatting]
keywords: notes, tips, cautions, warnings, admonitions
last_updated: July 3, 2016
summary: "You can insert notes, tips, warnings, and important a
lerts in your content. These notes are stored as shortcodes mad
e available through the linksrefs.hmtl include."

sidebar: mydoc_sidebar
permalink: mydoc_alerts

The sidebar: mydoc_sidebar refers to the _data/sidebars/mydoc_sidebar.yml
file.

Note that your sidebar can only have 2 levels (expand the Tag archives option to
see an example of the second level). Given that each product has its own sidebar,
this depth should be sufficient (it’s really like 3 levels). Deeper nesting goes
against usability recommendations.

You can optionally turn off the sidebar on any page (e.g. landing pages). To turn
off the sidebar for a page, you should set the page frontmatter tag as
hide_sidebar: true .

If you don’t declare a sidebar, the home_sidebar file gets used as the default
because this is the default specified in the config file:

-
scope:

path: ""
type: "pages"

values:
layout: "page"
comments: true
search: true
sidebar: home_sidebar
topnav: topnav

If you want to set different sidebar defaults based on different folders for your
pages, specify your defaults like this:

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 6

-
scope:

path: "pages/mydoc"
type: "pages"

values:
layout: "page"
comments: true
search: true
sidebar: mydoc_sidebar
topnav: topnav

This would load the mydoc_sidebar for each file in pages/mydoc. You could set
different defaults for different path scopes.

For more detail on the sidebar, see Sidebar navigation (page 72).

Top navigation
The top navigation works just like the sidebar. You can specify which topnav data
file should load by adding a topnav property in your page, like this:

topnav: topnav

Here the topnav refers to the _data/topnav.yml file.

Because most topnav options will be the same, the _config.yml file specifies
the topnav file as a default:

-
scope:

path: ""
type: "pages"

values:
layout: "page"
comments: true
search: true
sidebar: home_sidebar
topnav: topnav

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 7

Sidebar syntax
The sidebar data file uses a specific YAML syntax that you must follow. Follow the
sample pattern shown in the theme, specically looking at mydoc_sidebar.yml as
an example: Here’s a code sample showing all levels:

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 8

entries:
- title: sidebar

product: Jekyll Doc Theme
version: 6.0
folders:
- title: Overview

output: web, pdf
folderitems:

- title: Get started
url: /index.html
output: web, pdf
type: homepage

- title: Introduction
url: /mydoc_introduction.html
output: web, pdf

- title: Release Notes
output: web, pdf
folderitems:

- title: 6.0 Release notes
url: /mydoc_release_notes_60.html
output: web, pdf

- title: 5.0 Release notes
url: /mydoc_release_notes_50.html
output: web, pdf

- title: Tag archives
output: web
folderitems:

- title: Tag archives overview
url: /mydoc_tag_archives_overview.html
output: web

subfolders:
- title: Tag archive pages

output: web
subfolderitems:

- title: Formatting pages
url: /tag_formatting.html

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 9

output: web

- title: Navigation pages
url: /tag_navigation.html
output: web

- title: Content types pages
url: /tag_content_types.html
output: web

Each folder or subfolder must contain a title and output property. Each
folderitem or subfolderitem must contain a title , url , and output

property.

The two outputs available are web and pdf . (Even if you aren’t publishing PDF,
you still need to specify output: web).

The YAML syntax depends on exact spacing, so make sure you follow the pattern
shown in the sample sidebars. See my YAML tutorial (page 0) for more details
about how YAML works.

 Note: If you have just one character of spacing off, Jekyll won’t build due
to the YAML syntax error. You’ll see an error message in your console that
says “Error … did not find expected key while parsing a block mapping at
line 22 column 5. Error: Run jekyll build –trace for more information.” If you
encounter this, it usually refers to incorrect indentation or spacing in the
YAML file. See the example mydoc_sidebar.yml file to see where your
formatting went wrong.

Each level must have at least one topic before the next level starts. You can’t have
a second level that contains multiple third levels without having at least one
standalone topic in the second level. If you need a hierarchy that has a folder that
contains other folders and no loose topics, use a blank - item like this:

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 10

http://localhost:4010/mydoc-pdf/mydoc_yaml_tutorial

entries:
- title: sidebar

product: Jekyll Doc Theme
version: 6.0
folders:
- title: Overview

output: web, pdf
folderitems:

-

- title: Release Notes
output: web, pdf
folderitems:

- title: 6.0 Release notes
url: /mydoc_release_notes_60.html
output: web, pdf

- title: 5.0 Release notes
url: /mydoc_release_notes_50.html
output: web, pdf

- title: Installation
output: web, pdf
folderitems:

- title: About Ruby, Gems, Bundler, etc.
url: /mydoc_about_ruby_gems_etc.html
output: web, pdf

- title: Install Jekyll on Mac
url: /mydoc_install_jekyll_on_mac.html
output: web, pdf

- title: Install Jekyll on Windows
url: /mydoc_install_jekyll_on_windows.html
output: web, pdf

To accommodate the title page and table of contents in PDF outputs, each
product sidebar must list these pages before any other:

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 11

- title:
output: pdf
type: frontmatter
folderitems:
- title:

url: /titlepage
output: pdf
type: frontmatter

- title:
url: /tocpage
output: pdf
type: frontmatter

Leave the output as output: pdf for these frontmatter pages so that they don’t
appear in the web output.

For more detail on the sidebar, see Sidebar navigation (page 72) and YAML
tutorial (page 75).

Comments
The theme integrates Commento.io for comments below pages and posts. (This
commenting service doesn’t inject controversial tracking ads like Disqus does.)
You will need to Commento.io account + plan ($5/month) to authorize Commento
with your domain (no other configuration should be required). If you don’t want
comments, in the _config.yml file, change the comments: true properties (under
defaults) to comments: false in every instance. Then in the commento.html

include file (inside _includes), the {% unless page.comments == false %} ...

{% endunless %} logic will not insert the Commentio form.

Relative links and offline viewing
This theme uses relative links throughout so that you can view the site offline and
not worry about which server or directory you’re hosting it. It’s common with tech
docs to push content to an internal server for review prior to pushing the content
to an external server for publication. Because of the need for seamless
transferrence from one host to another, the site has to use relative links.

To view pages locally on your machine (without the Jekyll preview server), they
need to have the .html extension. The permalink property in the page’s
frontmatter (without surrounding slashes) is what pushes the files into the root
directory when the site builds.

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 12

https://commento.io/

Page frontmatter
When you write pages, include these same frontmatter properties with each page:

title: "Some title"
tags: [sample1, sample2]
keywords: keyword1, keyword2, keyword3
last_updated: Month day, year
summary: "optional summary here"
sidebar: sidebarname
permalink: filename.html

(You will customize the values for each of these properties, of course.)

For titles, surrounding the title in quotes is optional, but if you have a colon in the
title, you must surround the title with quotation marks. If you have a quotation
mark inside the title, escape it first with a backlash \ .

Values for keywords get populated into the metadata of the page for SEO.

Values for tags must be defined in your _data/tags.yml list. You also need a
corresponding tag file inside the tags folder pages/tags/ that follows the same
pattern as the other tag files shown in the tags folder. (Jekyll won’t auto-create
these tag files.)

If you don’t want the mini-TOC to show on a page (such as for the homepage or
landing pages), add toc: false in the frontmatter.

The permalink value should be the same as your filename and include the
“.html” file extension.

For more detail, see Pages (page 45).

Where to store your documentation topics
You can store your files for each product inside subfolders following the pattern
shown in the theme. For example, product1, product2, etc, can be stored in their
own subfolders inside the _pages directory. Inside _pages, you can store your

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 13

topics inside sub-subfolders or sub-sub-folders to your heart’s content. When
Jekyll builds your site, it will pull the topics into the root directory and use the
permalink for the URL.

Note that product1, product2, and mydoc are all just sample content to
demonstrate how to add multiple products into the theme. You can freely delete
that content.

For more information, see Pages (page 45) and Posts (page 52).

Configure the top navigation
The top navigation bar’s menu items are set through the _data/topnav.yml file.
Use the top navigation bar to provide links for navigating from one product to
another, or to navigate to external resources.

For external URLs, use external_url in the item property, as shown in the
example topnav.yml file. For internal links, use url the same was you do in the
sidebar data files.

Note that the topnav has two sections: topnav and topnav_dropdowns . The
topnav section contains single links, while the topnav_dropdowns section
contains dropdown menus. The two sections are independent of each other.

Generating PDF
If you want to generate PDF, you’ll need a license for Prince XML . You will also
need to install Prince . You can generate PDFs by product (but not for every
product on the site combined together into one massive PDF). Prince will work
even without a license, but it will imprint a small Prince image on the first page,
and you’re supposed to buy the license to use it.

If you’re on Windows, install Git Bash client rather than using the default Windows
command prompt.

Open up the css/printstyles.css file and customize the email address
(youremail@domain.com) that is listed there. This email address appears in the
bottom left footer of the PDF output. You’ll also need to create a PDF
configuration file following the examples shown in the pdfconfigs folder, and also
customize some build scripts following the same pattern shown in the root: pdf-
product1.sh

See the section on Generating PDFs (page 141) for more details about setting the
theme up for this output.

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 14

http://www.princexml.com/
http://www.princexml.com/doc/installing/
https://git-for-windows.github.io/

Blogs / News
For blog posts, create your markdown files in the _posts folder following the
sample formats. Post file names always begin with the date (YYYY-MM-DD-title).

The news/news.html file displays the posts, and the news_archive.html file shows
a yearly history of posts. In documentation, you might use the news to highlight
product features outside of your documentation, or to provide release notes and
other updates.

See Posts (page 52) for more information.

Markdown
This theme uses kramdown markdown . kramdown is similar to Github-flavored
Markdown, except that when you have text that intercepts list items, the spacing
of the intercepting text must align with the spacing of the first character after the
space of a numbered list item. Basically, with your list item numbering, use two
spaces after the dot in the number, like this:

1. First item
2. Second item
3. Third item

When you want to insert paragraphs, notes, code snippets, or other matter in
between the list items, use four spaces to indent. The four spaces will line up with
the first letter of the list item (the First or Second or Third).

1. First item

```
alert("hello");
```

2. Second item

Some pig!

3. Third item

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 15

http://kramdown.gettalong.org/

See the topics under “Formatting” in the sidebar for more information.

Automated links
If you want to use an automated system for managing links, see Automated Links
(page 0). This approach automatically creates a list of Markdown references to
simplify linking.

Other instructions
The content here is just a getting started guide only. For other details in working
with the theme, see the various sections in the sidebar.

Getting started with the Documentation Theme for Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 16

Introduction

Overview
This site provides documentation, training, and other notes for the Jekyll
Documentation theme. There’s a lot of information about how to do a variety of
things here, and it’s not all unique to this theme. But by and large, understanding
how to do things in Jekyll depends on how your theme is coded. As a result, these
additional details are provided.

The instructions here are geared towards technical writers working on
documentation. You may have a team of one or more technical writers working on
documentation for multiple projects. You can use this same theme to author all of
your documentation for each of your products. The theme is built to
accommodate documentation for multiple products on the same site.

Survey of features
Some of the more prominent features of this theme include the following:

• Bootstrap framework

• Navgoco multi-level sidebar for table of contents

• Ability to specify different sidebars for different products

• Top navigation bar with drop-down menus

• Notes, tips, and warning information notes

• Tags for alternative navigation

• Advanced landing page layouts from the Modern Business theme .

Getting started
To get started, see Getting Started (page 3).

Introduction PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 17

http://www.komposta.net/article/navgoco
http://startbootstrap.com/template-overviews/modern-business/

Supported features
Summary: If you're not sure whether Jekyll and this theme will
support your requirements, this list provides a semi-comprehensive
overview of available features.

Before you get into exploring Jekyll as a potential platform for help content, you
may be wondering if it supports some basic features needed to fulfill your tech
doc requirements. The following table shows what is supported in Jekyll and this
theme.

Supported features

Features Supported Notes

Content re-
use

Yes Supports re-use through Liquid. You can re-use
variables, snippets of code, entire pages, and
more. In DITA speak, this includes conref and
keyref. See Content reuse (page 63) for more de-
tails.

Markdown Yes You can author content using Markdown syntax,
specifically kramdown . This is a wiki-like syntax
for HTML that you can probably pick up in 10
minutes. Where Markdown falls short, you can
use HTML. Where HTML falls short, you use Liq-
uid, which is a scripting that allows you to incor-
porate more advanced logic.

Responsive
design

Yes Uses Bootstrap framework for responsive de-
sign.

Translation Yes To translate content, send the generated HTML
to your translation group. You can translate the
Markdown source if your translator accepts the
format, but usually Markdown is problematic.
Note that this theme isn’t structured well to ac-
commodate translation projects.

Supported features PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 18

https://kramdown.gettalong.org/
http://getbootstrap.com/

Features Supported Notes

Collaboration Yes You collaborate with Jekyll projects the same
way that developers collaborate with software
projects. (You don’t need a CMS.) Because
you’re working with text file formats, you can use
any version control software (Git, Mercurial, Per-
force, Bitbucket, etc.) as a CMS for your files.

Scalability Yes Your site can scale to any size. It’s up to you to
determine how you will design the information ar-
chitecture for your pages. You can choose what
you display at first, second, third, fourth, and
more levels, etc. Note that when your project has
thousands of pages, the build time will be longer
(maybe 1 minute per thousand pages?). It really
depends on how many for loops you have iterat-
ing through the pages. I recommend that you use
smaller repos in your content architecture.

Lightweight
architecture

Yes You don’t need a LAMP stack (Linux, Apache,
MySQL, PHP) architecture to get your site run-
ning. All of the building is done on your own ma-
chine, and you then push the static HTML files
onto a server.

Skinnability Yes You can skin your Jekyll site to look identical to
pretty much any other site online. If you have a
UX team, they can really skin and design the site
using all the tools familiar to the modern designer
– JavaScript, HTML5, CSS, jQuery, and more.
Jekyll is built on the modern web development
stack rather than the XML stack (XSLT, XPath,
XQuery). See this tutorial for details on how to
create your own Jekyll theme.

Support Yes The community for your Jekyll site isn’t so much
other tech writers (as is the case with DITA) but
rather the wider web development community.
Jekyll Talk is a great resource. So is Stack Over-
flow . See the Getting Help section of Jekyll.

Supported features PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 19

http://idratherbewriting.com/2017/05/26/big-repos-versus-small-repos/
http://jekyllrb.com/tutorials/convert-site-to-jekyll/
http://talk.jekyllrb.com/
https://stackoverflow.com/questions/tagged/jekyll
https://stackoverflow.com/questions/tagged/jekyll
http://jekyllrb.com/help/

Features Supported Notes

Blogging
features

Yes There is a simple blogging feature. This appears
as news (page 0) and is intended to promote
news that applies across products.

Versioning Yes Jekyll doesn’t version your files. You upload your
files to a version control system such as Github.
Your files are versioned there.

PC platform Yes Jekyll runs on Windows. Although the experience
working on the command line is better on a Mac,
Windows also works, especially now that Jekyll
3.0 dropped dependencies on Python, which
wasn’t available by default on Windows.

jQuery plug-
ins

Yes You can use any jQuery plugins you and other
JavaScript, CMS, or templating tools. However,
note that if you use Ruby plugins, you can’t di-
rectly host the source files on Github Pages be-
cause Github Pages doesn’t allow Ruby plugins.
Instead, you can just push your output to any
web server. If you’re not planning to use Github
Pages, there are no restrictions on any plugins of
any sort. Jekyll makes it super easy to integrate
every kind of plugin imaginable. This theme
doesn’t actually use any plugins, so you can pub-
lish on Github if you want.

Bootstrap in-
tegration

Yes This theme is built on Bootstrap . If you don’t
know what Bootstrap is, basically this means
there are hundreds of pre-built components,
styles, and other elements that you can simply
drop into your site. For example, the responsive
quality of the site comes about from the Boot-
strap code base.

Supported features PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 20

http://localhost:4010/mydoc-pdf/news.html
http://getbootstrap.com/

Features Supported Notes

Fast-loading
pages

Yes This is one of the Jekyll’s strengths. Because the
files are static, they loading extremely fast, ap-
proximately 0.5 seconds per page. You can’t beat
this for performance. (A typically database-driven
site like WordPress averages about 2.5 + sec-
onds loading time per page.) Because the pages
are all static, it means they are also extremely se-
cure. You won’t get hacked like you might with a
WordPress site.

Themes Yes You can have different themes for different out-
puts. If you know CSS, theming both the web and
print outputs is pretty easy.

Open source Yes This theme is entirely open source. Every piece of
code is open, viewable, and editable. Note that
this openness comes at a price — it’s easy to
make changes that break the theme or otherwise
cause errors.

Offline view-
ing

Yes This theme uses relative linking throughout, so
you can view the content offline and on any web-
server without configuring urls and baseurls in
your configuration file.

Features not available
The following features are not available.

Features Supported Notes

CMS inter-
face

No Unlike with WordPress, you don’t log into an in-
terface and navigate to your files. You work with
text files and preview the site dynamically in your
browser. Don’t worry – this is part of the simplicy
that makes Jekyll awesome. I recommend using
WebStorm as your text editor.

Supported features PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 21

Features Supported Notes

WYSIWYG
interface

No I use WebStorm to author content, because I like
working in text file formats. But you can use any
Markdown editor you want (e.g., Lightpaper for
Mac, Marked) to author your content.

Different out-
puts

No This theme provides a single website output that
contains documentation for multiple products.
Unlike previous iterations of the theme, it’s not in-
tended to support different outputs from the
same content. However, you can easily set things
up to do this by simply creating multiple configu-
ration files and running different builds for each
configuration file.

Robust
search

No The search feature is a simplistic JSON search.
For more robust search, you should integrate
Swiftype or Algolia. However, those services
aren’t currently integrated into the theme.

Standardized
templates

No You can create pages with any structure you
want. The theme does not enforce topic types
such as a task or concept as the DITA specifica-
tion does.

Integration
with Swag-
ger

No You can link to a SwaggerUI output, but there is
no built-in integration of SwaggerUI into this doc-
umentation theme.

Templates
for endpoints

No Although static site generators work well with API
documentation, there aren’t any built-in templates
specific to endpoints in this theme. You could
construct your own, though.

eBook out-
put

No There isn’t an eBook output for the content.

Supported features PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 22

About the theme's author
Summary: I have used this theme for projects that I've worked on as
a professional technical writer.

My name is Tom Johnson, and I’m a technical writer, blogger, and podcaster
based in San Jose, California. For more details, see my technical writing blog and
my course on API documentation . See my blog’s about page for more details
about me.

I have used this theme and variations of it for various documentation projects.
This theme has undergone several major iterations, and now it’s fairly stable and
full of all the features that I need. You are welcome to use it for your
documentation projects for free.

I think this theme does pretty much everything that you can do with something like
OxygenXML, but without the constraints of structured authoring. Everything is
completely open and changeable, so if you start tinkering around with the theme’s
files, you can break things. But it’s completely empowering as well!

With a completely open architecture and code base, you can modify the code to
make it do exactly what you want, without having to jump through all kinds of
confusing or proprietary code.

If there’s a feature you need but it isn’t available here, let me know and I might
add it. Alternatively, if you fork the theme, I would love to see your modifications
and enhancements. Thanks for using Jekyll.

About the theme's author PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 23

http://idratherbewriting.com/
http://idratherbewriting.com/learnapidoc/
http://idratherbewriting.com/aboutme/

Support
Summary: Contact me for any support issues.

I’m not actively working on this theme. However, feel free to click Feedback on
the top navbar to send me an email or open an issue on GitHub .

Support PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 24

https://github.com/tomjoht/documentation-theme-jekyll/issues

Release notes 6.0
Summary: Version 6.0 of the Documentation theme for Jekyll,
released July 4, 2016, implements relative links so you can view the
files offline or on any server without configuring urls and baseurls.
Additionally, you can store pages in subdirectories. Templates for
alerts and images are available.

Relative links
You can now view the site offline rather than solely through the Jekyll preview
server or deployed on a web server. The linking approach in both the sidebar and
with inline links uses relative linking throughout.

Subfolders for pages
You can creates folders and subfolders for your pages, similar to how you can
store posts in folders and subfolders. When Jekyll builds the site, all pages get
pushed into the root directory as single html files (rather than being pushed inside
folders, or remaining in subfolders). See Pages (page 45) for more details.

Alerts templates
You can use include templates for notes, tips, and warnings. These include
templates make it easier to insert notes. If you make an error, you’re immediately
made aware since the site won’t build. See Alerts (page 96) for more details.

Image templates
Similar to alerts, images also have include templates. You can insert both regular
images and inline images, such as images that are a button or icon. See Images
(page 111) for more details.

Automated links using Markdown formatting
Instead of using YAML references to handle links, I’ve switched to a Markdown
reference style approach. A links.html file iterates through the sidebar files and
formats the content in the Markdown reference. You then just use Markdown
syntax for the links. See Links (page 118) for more details.

Release notes 6.0 PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 25

Workflow maps
If you want to display a workflow map for a process, you can do so by adding
some properties in your frontmatter. The workflow map helps guide users through
a process. Both simple and complex workflow maps are available. For more
details, see Workflow maps (page 130).

Upgrading
If you want to upgrade from an earlier version of the theme, I recommend that you
download the new theme and copy of your Markdown files into the new theme.
You’ll then need to make adjustments to your page frontmatter, to the sidebar
table of contents, links, image references, and alert references. In short, there’s no
easy upgrade path. But all of this won’t take too long if you don’t have mountains
of content.

Release notes 6.0 PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 26

Release notes 5.0
Summary: Version 5.0 of the Documentation theme for Jekyll
changes some fundamental ways the theme works to provide
product-specific sidebars, intended to accommodate a site where
multiple products are grouped together on the same site rather than
generated out as separate outputs.

Unique sidebars for each product
In previous versions of the theme, I built the theme to generate different outputs
for different scenarios based on various filtering attributes that might include
product, version, platform, and audience variants.

However, this model results in siloed outputs and lots of separate file directories
to manage. Instead of having 30 separate sites for your content (or however many
variants you might have been producing), in this version of the theme I’ve moved
towards a strategy of having one site with multiple products.

For each product, you can associate a unique sidebar with each of the product’s
pages. This allows you to have all your documentation on one site, but with
separate navigation that is tailored to a view of that product.

You can still output to both web and PDF. And if you really need multiple site
outputs, you can still do so by using multiple configuration files that trigger
different builds. But my conclusion after using the multiple site output model for
some years is that it’s a bad practice for tech comm.

Permalinks
With this theme, since you’ll be publishing to one site, I’ve implement permalinks
instead of relative links. Using permalinks means the way you store pages is much
more flexible. You can store topics in folders and subfolders, etc., to any degree.
But note that with permalinks you can’t view the content offline (outside of Jekyll’s
preview server) nor on a separate site other than the one specified in the
configuration file. Permalinks are how Jekyll was designed to work, and the sites
just work better that way.

Release notes 5.0 PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 27

Kramdown and Rouge
I also switched from redcarpet and Pygments to Kramdown and Rouge to align
with the current direction of Jekyll 3.0. Kramdown is a Markdown filter (it’s slightly
different from Github-flavored Markdown). Rouge is a syntax highlighter.
Pygments had some dependencies on Python, which made it more cumbersome
for Windows users.

Blog feature
I included a blog feature with this version of the theme. You can write posts and
view them through the News link. There’s also an archive for blog posts that sorts
posts by year.

Additionally, the tagging system works across both the blog and pages, so your
tags allow users to move laterally across the site based on topics they’re
interested in. When you view a tag archive, the sidebar shows a list of tags.

Updated documentation
I updated the documentation for the theme. The switch from the multi-site outputs
to the single-site with multiple sidebars required updating a lot of different parts of
the documentation and code.

Fixed errors
Previously I had some errors with the HTML that showed up in w3c HTML
validator analyses. This caused some small problems in certain browsers or
systems less tolerant of the errors. I fixed all of the errors.

Accessing the old theme
If you want to access the old theme, you can still find it here .

Release notes 5.0 PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 28

https://github.com/tomjoht/jekylldoctheme-separate-outputs

About Ruby, Gems, Bundler, and other
prerequisites

Summary: Ruby is a programming language you must have on your
computer in order to build Jekyll locally. Ruby has various gems (or
plugins) that provide various functionality. Each Jekyll project usually
requires certain gems.

About Ruby
Jekyll runs on Ruby, a programming language. You have to have Ruby on your
computer in order to run Ruby-based programs like Jekyll. Ruby is installed on the
Mac by default, but you must add it to Windows.

About Ruby Gems
Ruby has a number of plugins referred to as “gems.” Just because you have Ruby
doesn’t mean you have all the necessary Ruby gems that your program needs to
run. Gems provide additional functionality for Ruby programs. There are
thousands of Rubygems available for you to use.

Some gems depend on other gems for functionality. For example, the Jekyll gem
might depend on 20 other gems that must also be installed.

Each gem has a version associated with it, and not all gem versions are
compatible with each other.

Rubygem package managers
Bundler is a gem package manager for Ruby, which means it goes out and gets
all the gems you need for your Ruby programs. If you tell Bundler you need the
jekyll gem , it will retrieve all the dependencies on the jekyll gem as well –
automatically.

Not only does Bundler retrieve the right gem dependencies, but it’s smart enough
to retrieve the right versions of each gem. For example, if you get the github-
pages gem, it will retrieve all of these other gems:

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 29

https://rubygems.org/
http://bundler.io/
https://rubygems.org/gems/jekyll
https://rubygems.org/gems/github-pages
https://rubygems.org/gems/github-pages

github-pages-health-check = 1.1.0
jekyll = 3.0.3
jekyll-coffeescript = 1.0.1
jekyll-feed = 0.4.0
jekyll-gist = 1.4.0
jekyll-github-metadata = 1.9.0
jekyll-mentions = 1.1.2
jekyll-paginate = 1.1.0
jekyll-redirect-from = 0.10.0
jekyll-sass-converter = 1.3.0
jekyll-seo-tag = 1.3.2
jekyll-sitemap = 0.10.0
jekyll-textile-converter = 0.1.0
jemoji = 0.6.2
kramdown = 1.10.0
liquid = 3.0.6
mercenary ~> 0.3
rdiscount = 2.1.8
redcarpet = 3.3.3
RedCloth = 4.2.9
rouge = 1.10.1
terminal-table ~> 1.

See how Bundler retrieved version 3.0.3 of the jekyll gem, even though (as of this
writing) the latest version of the jekyll gem is 3.1.2? That’s because github-pages
is only compatible up to jekyll 3.0.3. Bundler handles all of this dependency and
version compatibility for you.

Trying to keep track of which gems and versions are appropriate for your project
can be a nightmare. This is the problem Bundler solves. As explained on
Bundler.io :

Bundler provides a consistent environment for Ruby
projects by tracking and installing the exact gems and
versions that are needed.

Bundler is an exit from dependency hell, and ensures that
the gems you need are present in development, staging,
and production. Starting work on a project is as simple as
bundle install.

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 30

http://bundler.io/

Gemfiles
Bundler looks in a project’s “Gemfile” (no file extension) to see which gems are
required by the project. The Gemfile lists the source and then any gems, like this:

source "https://rubygems.org"

gem 'github-pages'
gem 'jekyll'

The source indicates the site where Bundler will retrieve the gems:
https://rubygems.org .

The gems it retrieves are listed separately on each line.

Here no versions are specified. Sometimes gemfiles will specify the versions like
this:

gem 'kramdown', '1.0'

This means Bundler should get version 1.0 of the kramdown gem.

To specify a subset of versions, the Gemfile looks like this:

gem 'jekyll', '~> 2.3'

The ~> sign means greater than or equal to the last digit before the last period in
the number.

Here it will get any gem equal to 2.3 but less than 3.0.

If it adds another digit, the scope is affected:

gem `jekyll`, `~>2.3.1'

This means to get any gem equal to 2.3.1 but less than 2.4.

If it looks like this:

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 31

https://rubygems.org/

gem 'jekyll', '~> 3.0', '>= 3.0.3'

This will get any Jekyll gem between versions 3.0 and up to 3.0.3.

See this Stack Overflow post for more details.

Gemfile.lock
After Bundler retrieves and installs the gems, it makes a detailed list of all the
gems and versions it has installed for your project. The snapshot of all gems +
versions installed is stored in your Gemfile.lock file, which might look like this:

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 32

http://stackoverflow.com/questions/5170547/what-does-tilde-greater-than-mean-in-ruby-gem-dependencies

GEM
remote: https://rubygems.org/
specs:

RedCloth (4.2.9)
activesupport (4.2.5.1)

i18n (~> 0.7)
json (~> 1.7, >= 1.7.7)
minitest (~> 5.1)
thread_safe (~> 0.3, >= 0.3.4)
tzinfo (~> 1.1)

addressable (2.3.8)
coffee-script (2.4.1)

coffee-script-source
execjs

coffee-script-source (1.10.0)
colorator (0.1)
ethon (0.8.1)

ffi (>= 1.3.0)
execjs (2.6.0)
faraday (0.9.2)

multipart-post (>= 1.2, < 3)
ffi (1.9.10)
gemoji (2.1.0)
github-pages (52)

RedCloth (= 4.2.9)
github-pages-health-check (= 1.0.1)
jekyll (= 3.0.3)
jekyll-coffeescript (= 1.0.1)
jekyll-feed (= 0.4.0)
jekyll-gist (= 1.4.0)
jekyll-mentions (= 1.0.1)
jekyll-paginate (= 1.1.0)
jekyll-redirect-from (= 0.9.1)
jekyll-sass-converter (= 1.3.0)
jekyll-seo-tag (= 1.3.1)
jekyll-sitemap (= 0.10.0)
jekyll-textile-converter (= 0.1.0)
jemoji (= 0.5.1)
kramdown (= 1.9.0)
liquid (= 3.0.6)
mercenary (~> 0.3)
rdiscount (= 2.1.8)
redcarpet (= 3.3.3)
rouge (= 1.10.1)
terminal-table (~> 1.4)

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 33

github-pages-health-check (1.0.1)
addressable (~> 2.3)
net-dns (~> 0.8)
octokit (~> 4.0)
public_suffix (~> 1.4)
typhoeus (~> 0.7)

html-pipeline (2.3.0)
activesupport (>= 2, < 5)
nokogiri (>= 1.4)

i18n (0.7.0)
jekyll (3.0.3)

colorator (~> 0.1)
jekyll-sass-converter (~> 1.0)
jekyll-watch (~> 1.1)
kramdown (~> 1.3)
liquid (~> 3.0)
mercenary (~> 0.3.3)
rouge (~> 1.7)
safe_yaml (~> 1.0)

jekyll-coffeescript (1.0.1)
coffee-script (~> 2.2)

jekyll-feed (0.4.0)
jekyll-gist (1.4.0)

octokit (~> 4.2)
jekyll-mentions (1.0.1)

html-pipeline (~> 2.3)
jekyll (~> 3.0)

jekyll-paginate (1.1.0)
jekyll-redirect-from (0.9.1)

jekyll (>= 2.0)
jekyll-sass-converter (1.3.0)

sass (~> 3.2)
jekyll-seo-tag (1.3.1)

jekyll (~> 3.0)
jekyll-sitemap (0.10.0)
jekyll-textile-converter (0.1.0)

RedCloth (~> 4.0)
jekyll-watch (1.3.1)

listen (~> 3.0)
jemoji (0.5.1)

gemoji (~> 2.0)
html-pipeline (~> 2.2)
jekyll (>= 2.0)

json (1.8.3)
kramdown (1.9.0)

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 34

liquid (3.0.6)
listen (3.0.6)

rb-fsevent (>= 0.9.3)
rb-inotify (>= 0.9.7)

mercenary (0.3.5)
mini_portile2 (2.0.0)
minitest (5.8.4)
multipart-post (2.0.0)
net-dns (0.8.0)
nokogiri (1.6.7.2)

mini_portile2 (~> 2.0.0.rc2)
octokit (4.2.0)

sawyer (~> 0.6.0, >= 0.5.3)
public_suffix (1.5.3)
rb-fsevent (0.9.7)
rb-inotify (0.9.7)

ffi (>= 0.5.0)
rdiscount (2.1.8)
redcarpet (3.3.3)
rouge (1.10.1)
safe_yaml (1.0.4)
sass (3.4.21)
sawyer (0.6.0)

addressable (~> 2.3.5)
faraday (~> 0.8, < 0.10)

terminal-table (1.5.2)
thread_safe (0.3.5)
typhoeus (0.8.0)

ethon (>= 0.8.0)
tzinfo (1.2.2)

thread_safe (~> 0.1)

PLATFORMS
ruby

DEPENDENCIES
github-pages
jekyll

BUNDLED WITH
1.11.2

You can always delete the Gemlock file and run Bundle install again to get the
latest versions. You can also run bundle update , which will ignore the Gemlock
file to get the latest versions of each gem.

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 35

To learn more about Bundler, see Bundler’s Purpose and Rationale .

About Ruby, Gems, Bundler, and other prerequisites PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 36

http://bundler.io/rationale.html

Install Jekyll on Mac
Summary: Installation of Jekyll on Mac is usually less problematic
than on Windows. However, you may run into permissions issues with
Ruby that you must overcome. You should also use Bundler to be
sure that you have all the required gems and other utilities on your
computer to make the project run.

Ruby and RubyGems
Ruby and RubyGems are usually installed by default on Macs. Open your
Terminal and type which ruby and which gem to confirm that you have Ruby
and Rubygems. You should get a response indicating the location of Ruby and
Rubygems.

If you get responses that look like this:

/usr/local/bin/ruby

and

/usr/local/bin/gem

Great! Skip down to the Bundler (page 39) section.

However, if your location is something like /Users/MacBookPro/.rvm/rubies/

ruby-2.2.1/bin/gem , which points to your system location of Rubygems, you
will likely run into permissions errors when trying to get a gem. A sample
permissions error (triggered when you try to install the jekyll gem such as gem

install jekyll) might look like this for Rubygems:

>ERROR: While executing gem ... (Gem::FilePermissionError)
You don't have write permissions for the /Library/Ruby/Gems/

2.0.0 directory.

Install Jekyll on Mac PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 37

https://rubygems.org/pages/download

Instead of changing the write permissions on your operating system’s version of
Ruby and Rubygems (which could pose security issues), you can install another
instance of Ruby (one that is writable) to get around this.

Install Homebrew
Homebrew is a package manager for the Mac, and you can use it to install an
alternative instance of Ruby code. To install Homebrew, run this command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.co
m/Homebrew/install/master/install)"

If you already had Homebrew installed on your computer, be sure to update it:

brew update

Install Ruby through Homebrew
Now use Homebrew to install Ruby:

brew install ruby

Log out of terminal, and then then log back in.

When you type which ruby and which gem , you should get responses like this:

/usr/local/bin/ruby

And this:

/usr/local/bin/gem

Now Ruby and Rubygems are installed under your username, so these directories
are writeable.

Install Jekyll on Mac PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 38

Note that if you don’t see these paths, try restarting your computer or try installing
rbenv, which is a Ruby version management tool. If you still have issues getting a
writeable version of Ruby, you need to resolve them before installing Bundler.

Install the Jekyll gem
At this point you should have a writeable version of Ruby and Rubygem on your
machine.

Now use gem to install Jekyll:

gem install jekyll

You can now use Jekyll to create new Jekyll sites following the quick-start
instructions on Jekyllrb.com .

Installing dependencies through Bundler
Some Jekyll themes will require certain Ruby gem dependencies. These
dependencies are stored in something called a Gemfile, which is packaged with
the Jekyll theme. You can install these dependencies through Bundler. (Although
you don’t need to install Bundler for this Documentation theme, it’s a good idea to
do so.)

Bundler is a package manager for RubyGems. You can use it to get all the gems
(or Ruby plugins) that you need for your Jekyll project.

You install Bundler by using the gem command with RubyGems:

gem install bundler

If you’re prompted to switch to superuser mode (sudo) to get the correct
permissions to install Bundler in that directory, avoid doing this. All other
applications that need to use Bundler will likely not have the needed permissions
to run.

Bundler goes out and retreives all the gems that are specified in a Jekyll project’s
Gemfile. If you have a gem that depends on other gems to work, Bundler will go
out and retrieve all of the dependencies as well. (To learn more about Bundler, see
About Ruby Gems (page 29).

Install Jekyll on Mac PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 39

http://jekyllrb.com/
http://bundler.io/

The vanilla Jekyll site you create through jekyll new my-awesome-site doesn’t
have a Gemfile, but many other themes (including the Documentation theme for
Jekyll) do have a Gemfile.

Serve the Jekyll Documentation theme
1. Browse to the directory where you downloaded the Documentation

theme for Jekyll.

2. Type jekyll serve

3. Go to the preview address in the browser. (Make sure you include the /

at the end.)

Resolve “No Github API authentication” errors
After making an edit, Jekyll auto-rebuilds the site. If you have the Gemfile in the
theme with the github-pages gem, you may see the following error:

GitHub Metadata: No GitHub API authentication could be found. S
ome fields may be missing or have incorrect data.

If you see this error, you will need to take some additional steps to resolve it. (Note
that this error only appears if you have the github-pages gem in your gemfile.) The
resolution involves adding a Github token and a cert file.

 Note: These instructions apply to Mac OS X, but they’re highly similar to
Windows. These instructions are adapted from a post on Knight Codes . If
you’re on Windows, see the Knight Codes post for details instead of
following along below.

To resolve the “No Github API authentication” error:

1. Follow Github’s instructions to create a personal access token .

2. Open the .bash_profile file in your user directory:

open ~/.bash_profile

Install Jekyll on Mac PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 40

http://knightcodes.com/miscellaneous/2016/09/13/fix-github-metadata-error.html
https://help.github.com/articles/creating-an-access-token-for-command-line-use/

The file will open in your default terminal editor. If you don’t have a
.bash_profile file, you can just create a file with this name. Note that files
that begin with . are hidden, so if you’re looking in your user directory
for the file, use ls -a to see hidden files.

3. In your .bash_profile file, reference your token as a system variable like
this:

export JEKYLL_GITHUB_TOKEN=abc123abc123abc123abc123abc12
3abc123abc123abc123

Replace abc123... with your own token that you generated in step 1.

4. Go to [https://curl.haxx.se/ca/cacert.pem][https://curl.haxx.se/ca/
cacert.pem]. Right-click the page, select **Save as, and save the file
on your computer (save it somewhere safe, where you won’t delete it).
Name the file cacert.

5. Open your .bash_profile file again and add this line, replacing Users/

johndoe/projects/ with the path to your cacert.pem file:

export SSL_CERT_FILE=/Users/johndoe/projects/cacert.pem

6. Close and restart your terminal.

Browse to your jekyll project and run bundle exec jekyll serve . Make an edit
to a file and observe that no Github API errors appear when Jekyll rebuilds the
project.

Install Jekyll on Mac PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 41

Install Jekyll on Windows
 Tip: For a better terminal emulator on Windows, use Git Bash . Git Bash
gives you Linux-like control on Windows.

Install Ruby and Ruby Development Kit
First you must install Ruby because Jekyll is a Ruby-based program and needs
Ruby to run.

1. Go to RubyInstaller for Windows .

2. Under RubyInstallers, download and install one of the Ruby installers
under the WITH DEVKIT list (usually the recommended/highlighted
option).

3. Double-click the downloaded file and proceed through the wizard to
install it. Run the ridk install step on the last stage of the installation
wizard.

4. Open a new command prompt window or Git Bash session.

Install the Jekyll gem
At this point you should have Ruby and Rubygem on your machine.

Now use gem to install Jekyll:

gem install jekyll

You can now use Jekyll to create new Jekyll sites following the quick-start
instructions on Jekyllrb.com .

Installing dependencies through Bundler
Some Jekyll themes will require certain Ruby gem dependencies. These
dependencies are stored in something called a Gemfile, which is packaged with
the Jekyll theme. You can install these dependencies through Bundler. (Although
you don’t need to install Bundler for this Documentation theme, it’s a good idea to
do so.)

Install Jekyll on Windows PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 42

https://git-for-windows.github.io/
http://rubyinstaller.org/downloads/
http://jekyllrb.com/

Bundler is a package manager for RubyGems. You can use it to get all the gems
(or Ruby plugins) that you need for your Jekyll project.

You install Bundler by using the gem command with RubyGems:

Install Bundler
1. Browse to the directory where you downloaded the Documentation

theme for Jekyll.

2. Delete or rename the existing Gemfile and Gemfile.lock files.

3. Install Bundler: gem install bundler

4. Initialize Bundler: bundle init

This will create a new Gemfile.

5. Open the Gemfile in a text editor.

Typically you can open files from the Command Prompt by just typing the
filename, but because Gemfile doesn’t have a file extension, no program
will automatically open it. You may need to use your File Explorer and
browse to the directory, and then open the Gemfile in a text editor such
as Notepad.

6. Remove the existing contents. Then paste in the following:

source "https://rubygems.org"

gem 'wdm'
gem 'jekyll'

The wdm gem allows for the polling of the directory and rebuilding of the
Jekyll site when you make changes. This gem is needed for Windows
users, not Mac users.

7. Save and close the file.

8. Type bundle install .

Bundle retrieves all the needed gems and gem dependencies and
downloads them to your computer. At this time, Bundle also takes a
snapshot of all the gems used in your project and creates a Gemfile.lock
file to store this information.

Install Jekyll on Windows PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 43

http://bundler.io/
https://rubygems.org/gems/wdm/versions/0.1.1

Git Clients for Windows
Although you can use the default command prompt with Windows, it’s
recommended that you use Git Bash instead. The Git Bash client will allow you to
run shell scripts and execute other Unix commands.

Serve the Jekyll Documentation theme
1. Browse to the directory where you downloaded the Documentation

theme for Jekyll.

2. Type jekyll serve

3. Go to the preview address in the browser. (Make sure you include the /

at the end.)

Unfortunately, the Command Prompt doesn’t allow you to easily copy
and paste the URL, so you’ll have to type it manually.

Resolving Github Metadata errors
After making an edit, Jekyll auto-rebuilds the site. If you have the Gemfile in the
theme with the github-pages gem, you may see the following error:

GitHub Metadata: No GitHub API authentication could be found. S
ome fields may be missing or have incorrect data.

If so, you will need to take some additional steps to resolve it. (Note that this error
only appears if you have the github-pages gem in your gemfile.) The resolution
involves adding a Github token and a cert file.

See this post on Knight Codes for instructions on how to fix the error. You
basically generate a personal token on Github and set it as a system variable. You
also download a certification file and set it as a system variable. This resolves the
issue.

Install Jekyll on Windows PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 44

https://git-for-windows.github.io/
http://knightcodes.com/miscellaneous/2016/09/13/fix-github-metadata-error.html

Pages
Summary: This theme primarily uses pages. You need to make sure
your pages have the appropriate frontmatter. One frontmatter tag
your users might find helpful is the summary tag. This functions
similar in purpose to the shortdesc element in DITA.

Where to author content
Use a text editor such as Sublime Text, WebStorm, IntelliJ, Visual Studio Code or
Atom to create pages. Atom is recommended because it’s created by Github,
which is driving some of the Jekyll development through Github Pages.

Where to save pages
You can store your pages in any folder structures you want, with any level of
folder nesting. The site output will pull all of those pages out of their folders and
put them into the root directory. Check out the _site folder, which is where Jekyll
is generated, to see the difference between your project’s structure and the
resulting site output.

The listing of all pages in the root directory (which happens when you add a
permalink property to the pages) is what allows the relative linking and offline
viewing of the site to work.

Frontmatter
Make sure each page has frontmatter at the top like this:

title: Alerts
tags: [formatting]
keywords: notes, tips, cautions, warnings, admonitions
last_updated: July 3, 2016
summary: "You can insert notes, tips, warnings, and important a
lerts in your content."
sidebar: mydoc_sidebar
permalink: mydoc_alerts.html

Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 45

Frontmatter is always formatted with three hyphens at the top and bottom. Your
frontmatter must have a title and permalink value. All the other values are
optional.

Note that you cannot use variables in frontmatter.

The following table describes each of the frontmatter that you can use with this
theme:

Frontmatter Required? Description

title Required The title for the page

tags Optional Tags for the page. Make all tags single words,
with underscores if needed (rather than spaces).
Separate them with commas. Enclose the whole
list within brackets. Also, note that tags must be
added to _data/tags_doc.yml to be allowed en-
trance into the page. This prevents tags from be-
coming somewhat random and unstructured. You
must create a tag page for each one of your tags
following the pattern shown in the tags folder.
(Tag pages aren’t automatically created.)

keywords Optional Synonyms and other keywords for the page. This
information gets stuffed into the page’s metadata
to increase SEO. The user won’t see the key-
words, but if you search for one of the keywords,
it will be picked up by the search engine.

last_updated Optional The date the page was last updated. This infor-
mation could helpful for readers trying to evaluate
how current and authoritative information is. If in-
cluded, the last_updated date appears in the
footer of the page in small font.

sidebar Required Refers to the sidebar data file for this page. Don’t
include the “.yml” file extension for the sidebar —
just provide the file name. If no sidebar is speci-
fied, this value will inherit the default property
set in your _config.yml file for the page’s front-
matter.

Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 46

Frontmatter Required? Description

summary Optional A 1-2 word sentence summarizing the content on
the page. This gets formatted into the summary
section in the page layout. Adding summaries is a
key way to make your content more scannable by
users (check out Jakob Nielsen’s site for a great
example of page summaries.) The only drawback
with summaries is that you can’t use variables in
them.

permalink Required The permalink must match the filename in order
for automated links to work. Additionally, you
must include the “.html” in the filename. Do not
put forward slashes around the permalink (this
makes Jekyll put the file inside a folder in the out-
put). When Jekyll builds the site, it will put the
page into the root directory rather than leaving it
in a subdirectory or putting it inside a folder and
naming the file index.html. Having all files flat-
tened in the root directory is essential for relative
linking to work and for all paths to JS and CSS
files to be valid.

datatable Optional ‘true’. If you add datatable: true in the front-
matter, scripts for the jQuery Datatables plugin
get included on the page. You can see the scripts
that conditionally appear by looking in the _lay-
outs/default.html page.

toc Optional If you specify toc: false in the frontmatter, the
page won’t have the table of contents that ap-
pears below the title. The toc refers to the list of
jump links below the page title, not the sidebar
navigation. You probably want to hide the TOC
on the homepage and product landing pages.

Colons in page titles
If you want to use a colon in your page title, you must enclose the title’s value in
quotation marks.

Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 47

http://www.nngroup.com/articles/corporate-blogs-front-page-structure/
https://www.datatables.net/

Page names and excluding files from outputs
By default, everything in your project is included in the output. You can exclude all
files that don’t belong to that project by specifying the file name, the folder name,
or by using wildcards in your configuration file:

exclude:

- filename.md
- subfolder_name/
- mydoc_*
- gitignore

Wildcards will exclude every match after the * .

Saving pages as drafts
If you add published: false in the frontmatter, your page won’t be published.
You can also move draft pages into the _drafts folder to exclude them from the
build. With posts, you can also keep them as drafts by omitting the date in the
title.

Markdown or HTML format
Pages can be either Markdown or HTML format (specified through either an .md
or .html file extension).

If you use Markdown, you can also include HTML formatting where needed. But if
your format is HTML, you must add a markdown="1" attribute to the element in
order to use Markdown inside that HTML element:

<div markdown="1">This is a [link](http://exmaple.com).</div>

For your Markdown files, note that a space or two indent will set text off as code
or blocks, so avoid spacing indents unless intentional.

Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 48

If you have a lot of HTML, as long as the top and bottom tags of the HTML are
flush left in a Markdown file, all the tags inside those bookend HTML tags will
render as HTML, regardless of their indentation. (This can be especially useful for
tables.)

Page names
I recommend prefixing your page names with the product, such as
“mydoc_pages” instead of just “pages.” This way if you have other products that
also have topics with generic names such as “pages,” there won’t be naming
conflicts.

Additionally, consider adding the product name in parentheses after the title, such
as “Pages (Mydoc)” so that users can clearly navigate different topics for each
product.

Kramdown Markdown
Kramdown is the Markdown flavor used in the theme but you are free to move to
CommonMark or Redcarpet . This mostly aligns with Github-flavored Markdown,
but with some differences in the indentation allowed within lists. Basically,
Kramdown requires you to line up the indent between list items with the first
starting character after the space in your list item numbering. See this blog post
on Kramdown and Rouge for more details.

You can use standard Multimarkdown syntax for tables. You can also use fenced
code blocks with lexers specifying the type of code. The configuration file shows
the Markdown processor and extension:

highlighter: rouge
markdown: kramdown
kramdown:
input: GFM
auto_ids: true
hard_wrap: false
syntax_highlighter: rouge

Automatic mini-TOCs
By default, a TOC appears at the top of your pages and posts. If you don’t want
the TOC to appear for a specific page, such as for a landing page or other
homepage, add toc: false in the frontmatter of the page.

Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 49

https://jekyllrb.com/docs/configuration/markdown/#commonmark
https://jekyllrb.com/docs/configuration/markdown/#redcarpet
http://idratherbewriting.com/2016/02/21/bug-with-kramdown-and-rouge-with-github-pages/
http://idratherbewriting.com/2016/02/21/bug-with-kramdown-and-rouge-with-github-pages/

The mini-TOC requires you to use the ## Markdown syntax for headings. If you
use <h2> elements, you must add an ID attribute for the heading element in order
for it to appear in the mini-TOC (for example, <h2

id="mysampleid">Heading</h2> .

Headings
Use pound signs before the heading title to designate the level. Note that
kramdown requires headings to have one space before and after the heading.
Without this space above and below, the heading won’t render into HTML.

Second-level heading

Result:

Second-level heading

Third-level heading

Result:

Third-level heading

Fourth-level heading

Result:

Fourth-level heading

Headings with ID Tags
If you want to use a specific ID tag with your heading, add it like this:

Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 50

Headings with ID Tags {#someIdTag}

Then you can reference it with a link like this on the same page:

[Some link](#someIdTag)

Result:

Some link (page 50)

For details about linking to headings on different pages, see Automated links to
headings on pages (page 0).

Specify a particular page layout
The configuration file sets the default layout for pages as the “page” layout.

You can create other layouts inside the layouts folder. If you create a new layout,
you can specify that your page use your new layout by adding layout:

mylayout.html in the page’s frontmatter. Whatever layout you specify in the
frontmatter of a page will override the layout default set in the configuration file.

Comments
Disqus, a commenting system, is integrated into the theme. In the configuration
file, specify the Disqus code for the universal code, and Disqus will appear. If you
don’t add a Disqus value, the Disqus form isn’t included.

Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 51

Posts
Summary: You can use posts when you want to create blogs or news
type of content.

About posts
Posts are typically used for blogs or other news information because they contain
a date and are sorted in reverse chronological order.

You create a post by adding a file in the _posts folder that is named yyyy-mm-
dddd-permalink.md, which might be 2016-02-25-my-latest-updates.md. You can
use any number of subfolders here that you want.

Posts use the post.html layout in the _layouts folder when you are viewing the
post.

The news.html file in the root directory shows a reverse chronological listing of the
10 latest posts

Allowed frontmatter
The frontmatter you can use with posts is as follows:

title: My sample post
tags: content_types
keywords: pages, authoring, exclusion, frontmatter
sidebar: mydoc_sidebar
permalink: mydoc_pages.html
summary: "This is some summary frontmatter for my sample post."

Frontmatter Required? Description

title Required The title for the page

Posts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 52

Frontmatter Required? Description

tags Optional Tags for the page. Make all tags single words, with
underscores if needed. Separate them with com-
mas. Enclose the whole list within brackets. Also,
note that tags must be added to _data/
tags_doc.yml to be allowed entrance into the
page. This prevents tags from becoming some-
what random and unstructured. You must create a
tag page for each one of your tags following the
sample pattern in the tabs folder. (Tag pages
aren’t automatically created.)

keywords Optional Synonyms and other keywords for the page. This
information gets stuffed into the page’s metadata
to increase SEO. The user won’t see the key-
words, but if you search for one of the keywords, it
will be picked up by the search engine.

sidebar Required Refers to the sidebar data file for this page. Don’t
include the “.yml” file extension for the sidebar —
just provide the file name. If no sidebar is speci-
fied, this value will inherit the default property
set in your _config.yml file for the page’s frontmat-
ter.

permalink Required This theme uses permalinks to facilitate the link-
ing. You specify the permalink want for the page,
and the _site output will put the page into the root
directory when you publish. Follow the same con-
vention here as you do with page permalinks – list
the file name followed by the .html extension.

summary Optional A 1-2 word sentence summarizing the content on
the page. This gets formatted into the summary
section in the page layout. Adding summaries is a
key way to make your content more scannable by
users (check out Jakob Nielsen’s site for a great
example of page summaries.) The only drawback
with summaries is that you can’t use variables in
them.

Posts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 53

http://www.nngroup.com/articles/corporate-blogs-front-page-structure/

Lists
Summary: This page shows how to create both bulleted and
numbered lists

Bulleted Lists
This is a bulleted list:

* first item
* second item
* third item

Result:

• first item

• second item

• third item

Numbered list
This is a simple numbered list:

1. First item.
1. Second item.
1. Third item.

Result:

1. First item.

2. Second item.

3. Third item.

You can use whatever numbers you want — when the Markdown filter processes
the content, it will assign the correct numbers to the list items.

Lists PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 54

Complex Lists
Here’s a more complex list:

1. Sample first item.

* sub-bullet one
* sub-bullet two

2. Continuing the list

1. sub-list numbered one
2. sub-list numbered two

3. Another list item.

Result:

1. Sample first item.

• sub-bullet one

• sub-bullet two

2. Continuing the list

a. sub-list numbered one

b. sub-list numbered two

3. Another list item.

Another Complex List
Here’s a list with some intercepting text:

Lists PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 55

1. Sample first item.

This is a result statement that talks about something....

2. Continuing the list

<div markdown="span" class="alert alert-info" role="aler
t"><i class="fa fa-info-circle"></i> Note: Remember to d
o this. If you have "quotes", you must escape them.</div>

Here's a list in here:

* first item
* second item

3. Another list item.

```js
function alert("hello");
```

4. Another item.

Result:

1. Sample first item.

This is a result statement that talks about something….

2. Continuing the list

 Note: Remember to do this. If you have “quotes”, you must
escape them.

Here’s a list in here:

• first item

• second item

3. Another list item.

Lists PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 56

function alert("hello");

4. Another item.

Key Principle to Remember with Lists

The key principle is to line up the first character after the dot following the number:

Lining up the left edge ensures the list stays in tact.

For the sake of simplicity, use two spaces after the dot for numbers 1 through 9.
Use one space for numbers 10 and up. If any part of your list doesn’t align
symmetrically on this left edge, the list will not render correctly. Also note that this
is characteristic of kramdown-flavored Markdown and may not yield the same
results in other Markdown flavors.

Lists PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 57

Conditional logic
Summary: You can implement advanced conditional logic that
includes if statements, or statements, unless, and more. This
conditional logic facilitates single sourcing scenarios in which you're
outputting the same content for different audiences.

About Liquid and conditional statements
If you want to create different outputs for different audiences, you can do all of
this using a combination of Jekyll’s Liquid markup and values in your configuration
file. This is how I previously configured the theme. I had different configuration
files for each output. Each configuration file specified different values for product,
audience, version, and so on. Then I had different build processes that would
leverage the different configuration files. It seemed like a perfect implementation
of DITA-like techniques with Jekyll.

But I soon found that having lots of separate outputs for a project was
undesirable. If you have 10 different outputs that have different nuances for
different audiences, it’s hard to manage and maintain. In this latest version of the
theme, I consolidated all information into the same output to explicitly do away
with the multi-output approach.

As such, the conditional logic won’t have as much play as it previously did.
Instead of conditions, you’ll probably want to incorporate navtabs (page 0) to split
up the information.

However, you can still of course use conditional logic as needed.

 Tip: Definitely check out Liquid’s documentation for more details about
how to use operators and other liquid markup. The notes here are a small,
somewhat superficial sample from the site.

Where to store filtering values
You can filter content based on values that you have set either in your page’s
frontmatter, a config file, or in a file in your _data folder. If you set the attribute in
your config file, you need to restart the Jekyll server to see the changes. If you set
the value in a file in your _data folder or page frontmatter, you don’t need to
restart the server when you make changes.

Conditional logic PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 58

http://localhost:4010/mydoc-pdf/mydoc_navtabs
http://docs.shopify.com/themes/liquid-documentation/basics

Conditional logic based on config file value
Here’s an example of conditional logic based on a value in the page’s frontmatter.
Suppose you have the following in your frontmatter:

platform: mac

On a page in my site (it can be HTML or markdown), you can conditionalize
content using the following:

{% if page.platform == "mac" %}
Here's some info about the Mac.
{% elsif page.platform == "windows" %}
Here's some info about Windows ...
{% endif %}

This uses simple if-elsif logic to determine what is shown (note the spelling of
elsif). The else statement handles all other conditions not handled by the if

statements.

Here’s an example of if-else logic inside a list:

To bake a casserole:

1. Gather the ingredients.
{% if page.audience == "writer" %}
2. Add in a pound of meat.
{% elsif page.audience == "designer" %}
3. Add in an extra can of beans.
{% endif %}
3. Bake in oven for 45 min.

You don’t need the elsif or else . You could just use an if (but be sure to
close it with endif).

Conditional logic PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 59

Or operator
You can use more advanced Liquid markup for conditional logic, such as an or

command. See Shopify’s Liquid documentation for more details.

For example, here’s an example using or :

{% if page.audience contains "vegan" or page.audience == "veget
arian" %}

Then run this...
{% endif %}

Note that you have to specify the full condition each time. You can’t shorten the
above logic to the following:

{% if page.audience contains "vegan" or "vegetarian" %}
// run this.

{% endif %}

This won’t work.

Unless operator
You can also use unless in your logic, like this:

{% unless site.output == "pdf" %}
...do this
{% endunless %}

When figuring out this logic, read it like this: “Run the code here unless this
condition is satisfied.”.”

Don’t read it the other way around or you’ll get confused. (It’s not executing the
code only if the condition is satisfied.)

Conditional logic PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 60

http://docs.shopify.com/themes/liquid-documentation/basics/operators

Storing conditions in the _data folder
Here’s an example of using conditional logic based on a value in a data file:

{% if site.data.options.output == "alpha" %}
show this content...
{% elsif site.data.options.output == "beta" %}
show this content...
{% else %}
this shows if neither of the above two if conditions are met.
{% endif %}

To use this, I would need to have a _data folder called options where the output

property is stored.

Specifying the location for _data
You can also specify a data_source for your data location in your configuration
file. Then you aren’t limited to simply using _data to store your data files.

For example, suppose you have 2 projects: alpha and beta. You might store all the
data files for alpha inside data_alpha, and all the data files for beta inside
data_beta.

In your alpha configuration file, specify the data source like this:

data_source: data_alpha

Then create a folder called _data_alpha.

For your beta configuration file, specify the data source like this:

data_source: data_beta

Then create a folder called _data_beta.

Conditional logic PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 61

Conditions versus includes
If you have a lot of conditions in your text, it can get confusing. As a best practice,
whenever you insert an if condition, add the endif at the same time. This will
reduce the chances of forgetting to close the if statement. Jekyll won’t build if
there are problems with the liquid logic.

If your text is getting busy with a lot of conditional statements, consider putting a
lot of content into includes so that you can more easily see where the conditions
begin and end.

Conditional logic PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 62

Content reuse
Summary: You can reuse chunks of content by storing these files in
the includes folder. You then choose to include the file where you
need it. This works similar to conref in DITA, except that you can
include the file in any content type.

About content reuse
You can embed content from one file inside another using includes. Put the file
containing content you want to reuse (e.g., mypage.html) inside the _includes/
custom folder and then use a tag like this:

{% include custom/mypage.html %}

With content in your _includes folder, you don’t add any frontmatter to these
pages because they will be included on other pages already containing
frontmatter.

Also, when you include a file, all of the file’s contents get included. You can’t
specify that you only want a specific part of the file included. However, you can
use parameters with includes.

Page-level variables
You can also create custom variables in your frontmatter like this:

title: Page-level variables
permalink: page_level_variables/
thing1: Joe
thing2: Dave

You can then access the values in those custom variables using the page

namespace, like this:

Content reuse PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 63

thing1: {{page.thing1}}
thing2: {{page.thing2}}

I use includes all the time. Most of the includes in the _includes directory are
pulled into the theme layouts. For those includes that change, I put them inside
custom and then inside a specific project folder.

Content reuse PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 64

Collections
Summary: Collections are useful if you want to loop through a special
folder of pages that you make available in a content API. You could
also use collections if you have a set of articles that you want to treat
differently from the other content, with a different layout or format.

What are collections
Collections are custom content types different from pages and posts. You might
create a collection if you want to treat a specific set of articles in a unique way,
such as with a custom layout or listing. For more detail on collections, see Ben
Balter’s explanation of collections here .

Create a collection
To create a collection, add the following in your configuration file:

collections:
tooltips:

output: true

In this example, “tooltips”” is the name of the collection.

Interacting with collections
You can interact with collections by using the site.collectionname

namespace, where collectionname is what you’ve configured. In this case, if I
wanted to loop through all tooltips, I would use site.tooltips instead of
site.pages or site.posts .

See Collections in the Jekyll documentation for more information.

How to use collections
I haven’t found a huge use for collections in normal documentation. However, I did
find a use for collections in generating a tooltip file that would be used for
delivering tooltips to a user interface from text files in the documentation. See
Help APIs and UI tooltips (page 154) for details.

Collections PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 65

https://ben.balter.com/2015/02/20/jekyll-collections/
https://ben.balter.com/2015/02/20/jekyll-collections/
http://jekyllrb.com/docs/collections/

Video tutorial on collections
See this video tutorial on Jekyll.tips for more details on collections.

Collections PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 66

http://jekyll.tips/jekyll-casts/introduction-to-collections/

WebStorm Text Editor
Summary: You can use a variety of text editors when working with a
Jekyll project. WebStorm from IntelliJ offers a lot of project-specific
features, such as find and replace, that make it ideal for working with
tech comm projects.

About text editors and WebStorm
There are a variety of text editors available, but I like WebStorm the best because
it groups files into projects, which makes it easy to find all instances of a text
string, to do find and replace operations across the project, and more.

If you decide to use WebStorm, here are a few tips on configuring the editor.

Remove unnecessary plugins
By default, WebStorm comes packaged with a lot more functionality than you
probably need. You can lighten the editor by removing some of the plugins. Go to
WebStorm > Preferences > Plugins and clear the check boxes of plugins you
don’t need.

Set default tab indent to 3 spaces instead of 4
You can set the way the tab works, and whether it uses spaces or a tab character.
For details, see Code Style. JavaScript in WebStorm’s help.

On a Mac, go to WebStorm > Preferences > Editor > Code Style > Other File
Types. Don’t select the “Use tab character” check box. Set 4 for the Tab size and
Indent check boxes.

On Windows, go to File > Settings > Editor > Code Style > Other File Types to
access the same menu.

Add the Markdown Support plugin
Since you’ll be writing in Markdown, having color coding and other support for
Markdown is important. Install the Markdown Support plugin by going to
WebStorm > Preferences > Plugins and clicking Install JetBrains Plugin.
Search for Markdown Support. You can also implement the Markdown Navigator
plugin.

WebStorm Text Editor PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 67

https://www.jetbrains.com/help/webstorm/2016.1/code-style-javascript.html?origin=old_help#d658997e132

Enable Soft Wraps (word wrapping)
Most likely you’ll want to enable soft wraps, which wraps lines rather than
extending them out forever and requiring you to scroll horizontally to see the text.
To enable softwrapping, go to WebStorm > Preferences > Editor > General and
see the Soft Wraps section. Select the Use soft wraps in editor check box.

Exclude a directory
When you’re searching for content, you don’t want to edit any file that appears in
the _site directory. You can exclude a directory from Webstorm by right-clicking
the directory and choosing Mark Directory As and then selecting Excluded.

Set tabs to 4 spaces
You can set the default number of spaces a tab sets, including whether Webstorm
uses a tab character or spaces. You want spaces, and you want to set this to
default number of spaces to 4 . Note that this is due to the way Kramdown
handles the continuation of lists.

To set the indentation, see the “Tabs and Indents” topic in this Code Style.
Javascript topic in Webstorm’s help.

Shortcuts
It can help to learn a few key shortcuts:

Command Shortcuts

Shift + Shift Allows you to find a file by searching for its name.

Shift + Com-
mand + F

Find in whole project. (WebStorm uses the term “Find in
path”.)

Shift + Com-
mand + R

Replace in whole project. (Again, WebStorm calls it “Re-
place in path.”)

Command + F Find on page

Shift + R Replace on page

WebStorm Text Editor PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 68

https://www.jetbrains.com/help/webstorm/2016.1/code-style-javascript.html?origin=old_help#d658997e132
https://www.jetbrains.com/help/webstorm/2016.1/code-style-javascript.html?origin=old_help#d658997e132

Command Shortcuts

Right-click >
Add to Favorites

Allows you to add files to a Favorites section, which ex-
pands below the list of files in the project pane.

Shift + tab Applies outdenting (opposite of tabbing)

Shift + Function
+ F6

Rename a file

Command +
Delete

Delete a file

Command + 2 Show Favorites pane

Shift + Option +
F

Add to Favorites

 Tip: If these shortcut keys aren't working for you, make sure you have the
"Max OS X 10.5+" keymap selected. Go to WebStorm > Preferences >
Keymap and select it there.

Finding files
When I want to find a file, I browse to the file in the preview site and copy the page
name in the URL. Then in Webstorm I press Shift twice and paste in the file name.
The search feature automatically highlights the file I want, and I press Enter.

Identifying changed files
When you have the Git and Github integration, changed files appear in blue. This
lets you know what needs to be committed to your repository.

Creating file templates
Rather than insert the frontmatter by hand each time, it’s much faster to simply
create a Jekyll template. To create a Jekyll template in WebStorm:

1. Right-click a file in the list of project files, and select New > Edit File
Templates.

WebStorm Text Editor PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 69

If you don’t see the Edit File Templates option, you may need to create a
file template first. Go to File > Default Settings > Editor > File and Code
Templates. Create a new file template with an md extension, and then
close and restart WebStorm. Then repeat this step and you will see the
File Templates option appear in the right context menu.

2. In the upper-left corner of the dialog box that appears, click the + button
to create a new template.

3. Name it something like Jekyll page. Insert the frontmatter you want, and
save it.

To use the Jekyll template, when you create a new file in your WebStorm
project, you can select your Jekyll file template.

Disable pair quotes
By default, each time you type ' , WebStorm will pair the quote (creating two
quotes). You can disable this by going to WebStorm > Preferences > Editor >
Smartkeys. Clear the Insert pair quotes check box.

WebStorm Text Editor PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 70

Atom Text Editor
Summary: Atom is a free text editor that is a favorite tool of many
writers because it is free. This page provides some tips for using
Atom.

If you haven’t downloaded Atom , download and install it. Use this as your editor
when working with Jekyll. The syntax highlighting is probably the best among the
available editors, as it was designed with Jekyll-authoring in mind. However, if you
prefer Sublime Text, WebStorm, or some other editor, you can also use that.

Customize the invisibles and tab spacing in Atom:

1. Go to Atom > Preferences.

2. On the Settings tab, keep the default options but also select the
following:

• Show Invisibles

• Soft Wrap

• For the Tab Length, type 4.

• For the Tab Type, select soft.

Turn off auto-complete:

1. Go to Atom > Preferences.

2. Click the Packages tab.

3. Search for autocomplete-plus.

4. Disable the autocomplete package.

Atom Shortcuts

• Cmd + T: Find file

• Cmd + Shift + F: Find across project

• Cmd + Alt + S: Save all

(For Windows, replace “Cmd” with “Ctrl”.)

Atom Text Editor PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 71

https://atom.io/

Sidebar Navigation
Summary: The sidebar navigation uses a jQuery component called
Navgoco. The sidebar is a somewhat complex part of the theme that
remembers your current page, highlights the active item, stays in a
fixed position on the page, and more. This page explains a bit about
how the sidebar was put together.

Navgoco foundation
The sidebar uses the Navgoco jQuery plugin as its basis. Why not use Bootstrap?
Navgoco provides a few features that I couldn’t find in Bootstrap:

• Navgoco sets a cookie to remember the user’s position in the sidebar. If
you refresh the page, the cookie allows the plugin to remember the state.

• Navgoco inserts an active class based on the navigation option that’s
open. This is essential for keeping the accordion open.

• Navgoco includes the expand and collapse features of a sidebar.

In short, the sidebar has some complex logic here. I’ve integrated Navgoco’s
features with the sidebar.html and sidebar data files to build the sidebar. It’s
probably the most impressive part of this theme. (Other themes usually aren’t
focused on creating hierarchies of pages, but this kind of hierarchy is important in
a documentation site.)

Accordion sidebar feature
The sidebar.html file (inside the _includes folder) contains the .navgoco method
called on the #mysidebar element.

There are some options to set within the .navgoco method. The only noteworthy
option is accordion . This option makes it so when you expand a section, the
other sections collapse. It’s a way of keeping your navigation controls condensed.

The value for accordion is a Boolean (true or false). By default, the
accordion option is set as true . If you don’t want the accordion, set it to
false . Note that there’s also a block of code near the bottom of sidebar.html

that is commented out. Uncomment out that section to have the Collapse all and
Expand All buttons appear.

Sidebar Navigation PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 72

https://github.com/tefra/navgoco

There’s a danger with setting the accordion to false . If you click Expand All and
the sidebar expands beyond the dimensions of the browser, users will be stuck.
When that happens, it’s hard to collapse it. As a best practice, leave the sidebar’s
accordion option set to true .

Fixed position sidebar
The sidebar has one other feature — this one from Bootstrap. If the user’s
viewport is tall enough, the sidebar remains fixed on the page. This allows the user
to scroll down the page and still keep the sidebar in view.

In the customsscripts.js file in the js folder, there’s a function that adds an affix

class if the height of the browser window is greater than 800 pixels. If the
browser’s height is less than 800 pixels, the nav affix class does not get
inserted. As a result, the sidebar can slide up and down as the user scrolls up and
down the page.

Depending on your content, you may need to adjust 800 pixel number. If your
sidebar is so long that having it in a fixed position makes it so the bottom of the
sidebar gets cut off, increase the 800 pixel number here to a higher number.

Opening sidebar links into external pages
In the attributes for each sidebar item, if you use external_url instead of url ,
the theme will insert the link into an a href element that opens in a blank target.

For example, the sidebar.html file contains the following code:

{% if folderitem.external_url %}
<a href="{{folderitem.external_url}}" target="_blank" r

el="noopener">{{folderitem.title}}

You can see that the external_url is a condition that applies a different
formatting. Although this feature is available, I recommend putting any external
navigation links in the top navigation bar instead of the side navigation bar.

Sidebar item highlighting
The sidebar.html file inserts an active class into the sidebar element when the
url attribute in the sidebar data file matches the page URL.

For example, the sidebar.html file contains the following code:

Sidebar Navigation PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 73

{% elsif page.url == folderitem.url %}
<li class="active"><a href="{{folderitem.url | remove:

"/"}}">{{folderitem.title}}

If the page.url matches the subfolderitem.url , then an active class gets
applied. If not, the active class does not get applied.

The page.url in Jekyll is a site-wide variable. If you insert {{page.url}} on a
page, it will render as follows: /mydoc_sidebar_navigation.html. The url attribute
in the sidebar item must match the page URL in order to get the active class
applied.

This is why the url value in the sidebar data file looks something like this:

- title: Understanding how the sidebar works
permalink: mydoc_understand_sidebar.html
output: web, pdf

Note that the url does not include the project folder where the file is stored. This is
because the site uses permalinks, which pulls the topics out of subfolders and
places them into the root directory when the site builds.

Now the page.url and the item.url can match and the active class can get
applied. With the active class applied, the sidebar section remains open.

Sidebar Navigation PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 74

YAML tutorial in the context of Jekyll
Summary: YAML is a format that relies on white spacing to separate
out the various elements of content. Jekyll lets you use Liquid with
YAML as a way to parse through the data. Storing items for your table
of contents is one of the most common uses of YAML with Jekyll.

Overview
One of the most interesting features of Jekyll is the ability to separate out data
elements from formatting elements using a combination of YAML and Liquid. This
setup is most common when you’re trying to create a table of contents.

Not many Jekyll themes actually have a robust table of contents, which is critical
when you are creating any kind of documentation or reference material that has a
lot of pages.

Here’s the basic approach in creating a table of contents. You store your data
items in a YAML file using YAML syntax. (I’ll go over more about YAML syntax in a
later section.) You then create your HTML structure in another file, such as
sidebar.html. You might leverage one of the many different table of content
frameworks (such as Navgoco) that have been created for this HTML structure.

Then, using Liquid syntax for loops and conditions, you access all of those values
from the data file and splice them into HTML formatting. This will become more
clear as we go through some examples.

YAML overview
Rather than just jump into YAML at the most advanced level, I’m going to start
from ground zero with an introduction to YAML and how you access basic values
in your data files using Jekyll.

Note that you don’t actually have to use Jekyll when using YAML. YAML is used in
a lot of other systems and is a format completely independent of Jekyll. However,
because Jekyll uses Liquid, it gives you a lot of power to parse through your
YAML data and make use of it.

YAML itself doesn’t do anything on its own — it’s just a way of storing your data in
a specific structure that other utilities can parse.

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 75

https://github.com/tefra/navgoco

YAML basics
You can read about YAML from a lot of different sources. Here are some basic
characteristics of YAML:

• YAML (“YAML Ain’t Markup Language”) doesn’t use markup tags. This
means you won’t see any kind of angle brackets. It uses white space as a
way to form the structure. This makes YAML much more human readable.

• Because YAML does use white space for the structure, YAML is
extremely picky about the exactness of spaces. If you have just one extra
space somewhere, it can cause the whole file to be invalid.

• For each new level in YAML, you indent two spaces. Each level provides
a different access point for the content. You use dot notation to access
each new level.

• Because tabs are not universally implemented the same way in editors, a
tab might not equate to two spaces. In general, it’s best to manually type
two spaces to create a new level in YAML.

• YAML has several types of elements. The most common are mappings
and lists. A mapping is simply a key-value pair. A list is a sequence of
items. List start with hyphens.

• Items at each level can have various properties. You can create
conditions based on the properties.

• You can use “for” loops to iterate through a list.

I realize a lot of this vague and general; however, it will become a lot more clear as
we go through some concrete examples.

In the _data folder, there’s a file called samplelist.yml. All of these examples come
from that file.

Example 1: Simple mapping
YAML:

name:
husband: Tom
wife: Shannon

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 76

Markdown + Liquid:

<p>Husband's name: {{site.data.samplelist.name.husband}}</p>
<p>Wife's name: {{site.data.samplelist.name.wife}}</p>

Notice that in order to access the data file, you use site.data.samplelist

where as samplelist is the name of the YAML file.

Result:

Husband's name: Tom

Wife's name: Shannon

Example 2: Line breaks
YAML:

feedback: >
This is my feedback to you.
Even if I include linebreaks here,
all of the linebreaks will be removed when the value is inser

ted.

block: |
This pipe does something a little different.
It preserves the breaks.
This is really helpful for code samples,
since you can format the code samples with

the appropriate

Markdown:

<p>Feedback</p>
<p>{{site.data.samplelist.feedback}}</p>

<p>Block</p>
<p>{{site.data.samplelist.block}}</p>

Result:

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 77

Feedback

This is my feedback to you. Even if I include linebreaks here, all of the
linebreaks will be removed when the value is inserted.

Block

This pipe does something a little different. It preserves the breaks. This is really
helpful for code samples, since you can format the code samples with the
appropriate white spacing.

The right angle bracket > allows you to put the value on the next lines (which
must be indented). Even if you create a line break, the output will remove all of
those line breaks, creating one paragraph.

The pipe | functions like the angle bracket in that it allows you to put the values
for the mapping on the next lines (which again must be indented). However, the
pipe does preserve all of the line breaks that you use. This makes the pipe method
ideal for storing code samples.

Example 3: Simple list
YAML:

bikes:
- title: mountain bikes
- title: road bikes
- title: hybrid bikes

Markdown + Liquid:

{% for item in site.data.samplelist.bikes %}
{{item.title}}
{% endfor %}

Result:

• mountain bikes

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 78

• road bikes

• hybrid bikes

Here we use a “for” loop to get each item in the bikes list. By using .title we
only get the title property from each list item.

Example 4: List items
YAML:

salesteams:
- title: Regions
subfolderitems:

- location: US
- location: Spain
- location: France

Markdown + Liquid:

{% for item in site.data.samplelist.salesteams %}
<h3>{{item.title}}</h3>

{% for entry in item.subfolderitems %}
{{entry.location}}
{% endfor %}

{% endfor %}

Result:

Regions

• US

• Spain

• France

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 79

Hopefully you can start to see how to wrap more complex formatting around the
YAML content. When you use a “for” loop, you choose the variable of what to call
the list items. The variable you choose to use becomes how you access the
properties of each list item. In this case, I decided to use the variable item . In
order to get each property of the list item, I used item.subfolderitems .

Each list item starts with the hyphen – . You cannot directly access the list item
by referring to a mapping. You only loop through the list items. If you wanted to
access the list item, you would have to use something like [1] , which is how you
access the position in an array. You cannot access a list item like you can access
a mapping key.

Example 5: Table of contents
YAML:

toc:
- title: Group 1

subfolderitems:
- page: Thing 1
- page: Thing 2
- page: Thing 3

- title: Group 2
subfolderitems:

- page: Piece 1
- page: Piece 2
- page: Piece 3

- title: Group 3
subfolderitems:

- page: Widget 1
- page: Widget 2 it's
- page: Widget 3

Markdown + Liquid:

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 80

{% for item in site.data.samplelist.toc %}
<h3>{{item.title}}</h3>

{% for entry in item.subfolderitems %}
{{entry.page}}
{% endfor %}

{% endfor %}

Result:

Group 1

• Thing 1

• Thing 2

• Thing 3

Group 2

• Piece 1

• Piece 2

• Piece 3

Group 3

• Widget 1

• Widget 2

• Widget 3

This example is similar to the previous one, but it’s more developed as a real table
of contents.

Example 6: Variables
YAML:

something: &hello Greetings earthling!
myref: *hello

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 81

Markdown:

{{ site.data.samplelist.myref }}

Result:

Greetings earthling!

This example is notably different. Here I’m showing how to reuse content in YAML
file. If you have the same value that you want to repeat in other mappings, you can
create a variable using the & symbol. Then when you want to refer to that
variable’s value, you use an asterisk * followed by the name of the variable.

In this case the variable is &hello and its value is Greetings earthling! In
order to reuse that same value, you just type *hello .

I don’t use variables much, but that’s not to say they couldn’t be highly useful. For
example, let’s say you put name of the product in parentheses after each title
(because you have various products that you’re providing documentation for in
the same site). You could create a variable for that product name so that if you
change how you’re referring to it, you wouldn’t have to change all instances of it in
your YAML file.

Example 7: Positions in lists
YAML:

about:
- zero
- one
- two
- three

Markdown:

{{ site.data.samplelist.about[0] }}

Result:

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 82

zero

You can see that I’m accessing one of the items in the list using [0] . This refers
to the position in the array where a list item is. Like most programming languages,
you start counting at zero, not one.

I wanted to include this example because it points to the challenge in getting a
value from a specific list item. You can’t just call out a specific item in a list like
you can with a mapping. This is why you usually iterate through the list items
using a “for” loop.

Example 8: Properties from list items at specific
positions
YAML:

numbercolors:
- zero:

properties: red
- one:

properties: yellow
- two:

properties: green
- three:

properties: blue

Markdown + Liquid:

{{ site.data.samplelist.numbercolors[0].properties }}

Result:

red

This example is similar as before; however, in this case were getting a specific
property from the list item in the zero position.

Example 9: Conditions
YAML:

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 83

mypages:
- section1: Section 1

audience: developers
product: acme
url: facebook.com

- section2: Section 2
audience: writers
product: acme
url: google.com

- section3: Section 3
audience: developers
product: acme
url: amazon.com

- section4: Section 4
audience: writers
product: gizmo
url: apple.com

- section5: Section 5
audience: writers
product: acme
url: microsoft.com

Markdown + Liquid:

{% for sec in site.data.samplelist.mypages %}
{% if sec.audience == "writers" %}
{{sec.url}}
{% endif %}
{% endfor %}

Result:

• google.com

• apple.com

• microsoft.com

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 84

This example shows how you can use conditions in order to selectively get the
YAML content. In your table of contents, you might have a lot of different pages.
However, you might only want to get the pages for a particular audience.
Conditions lets you get only the items that meet those audience attributes.

Now let’s adjust the condition just a little. Let’s add a second condition so that the
audience property has to be writers and the product property has to be

gizmo. This is how you would write it:

{% for sec in site.data.samplelist.mypages %}
{% if sec.audience == "writers" and sec.product == "gizmo" %}
{{sec.url}}
{% endif %}
{% endfor %}

And here is the result:

• apple.com

More resources
For more examples and explanations, see this helpful post on tournemille.com:
How to create data-driven navigation in Jekyll .

YAML tutorial in the context of Jekyll PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 85

http://www.tournemille.com/blog/How-to-create-data-driven-navigation-in-Jekyll

Tags
Summary: Tags provide another means of navigation for your
content. Unlike the table of contents, tags can show the content in a
variety of arrangements and groupings. Implementing tags in this
Jekyll theme is somewhat of a manual process.

Add a tag to a page
You can add tags to pages by adding tags in the frontmatter with values inside
brackets, like this:

title: 5.0 Release Notes
permalink: release_notes_5_0.html
tags: [formatting, single_sourcing]

or inside an unordered list, like this:

title: 5.0 Release Notes
permalink: release_notes_5_0.html
tags:

- formatting
- single_sourcing

Tags overview

 Note: With posts, tags have a namespace that you can access with
posts.tags.tagname, where tagname is the name of the tag. You can then
list all posts in that tag namespace. But pages don’t off this same tag
namespace, so you could actually use another key instead of tags.
Nevertheless, I’m using the same tags approach for posts as with pages.

Tags PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 86

To prevent tags from getting out of control and inconsistent, first make sure the
tag appears in the _data/tags.yml file. If it’s not there, the tag you add to a page
won’t be read. I added this check just to make sure I’m using the same tags
consistently and not adding new tags that don’t have tag archive pages.

 Note: In contrast to WordPress, with Jekyll to get tags on pages you have
to build out the functionality for tags so that clicking a tag name shows you
all pages with that tag. Tags in Jekyll are much more manual.

Additionally, you must create a tag archive page similar to the other pages named
tag_{tagname}.html folder. This theme doesn’t auto-create tag archive pages.

For simplicity, make all your tags single words (connect them with hyphens if
necessary).

Setting up tags
Tags have a few components.

1. In the _data/tags.yml file, add the tag names you want to allow. For
example:

allowed-tags:
- getting_started
- overview
- formatting
- publishing
- single_sourcing
- special_layouts
- content types

2. Create a tag archive file for each tag in your tags_doc.yml list. Name the
file following the same pattern in the tags folder, like this:
tag_collaboration.html.

Each tag archive file needs only this:

Tags PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 87

title: "Collaboration pages"
tagName: collaboration
search: exclude
permalink: tag_collaboration.html
sidebar: mydoc_sidebar

{% include taglogic.html %}

 Note: In the _includes/mydoc folder, there’s a taglogic.html file.
This file (included in each tag archive file) has common logic for
getting the tags and listing out the pages containing the tag in a
table with summaries or truncated excerpts. You don’t have to do
anything with the file — just leave it there because the tag archive
pages reference it.

3. Change the title, tagName, and permalink values to be specific to the tag
name you just created.

By default, the _layouts/page.html file will look for any tags on a page and
insert them at the bottom of the page using this code:

<div class="tags">
{% if page.tags != null %}
Tags:
{% assign projectTags = site.data.tags.allowed-tags %}
{% for tag in page.tags %}
{% if projectTags contains tag %}
<a href="{{ "tag_" | append: tag | append: ".html" }}" class="b
tn btn-default navbar-btn cursorNorm" role="button">{{page.tagN
ame}}{{tag}}
{% endif %}
{% endfor %}
{% endif %}
</div>

Because this code appears on the _layouts/page.html file by default, you don’t
need to do anything in your page to get the tags to appear. However, if you want
to alter the placement or change the button color, you can do so within the
_includes/taglogic.html file.

Tags PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 88

You can change the button color by changing the class on the button from btn-

info to one of the other button classes bootstrap provides. See Labels (page
117) for more options on button class names.

Retrieving pages for a specific tag
If you want to retrieve pages outside of a particular tag_archive page, you could
use this code:

Getting started pages:

{% for page in site.pages %}
{% for tag in page.tags %}
{% if tag == "getting_started" %}
{{page.title}}</l
i>
{% endif %}
{% endfor %}
{% endfor %}

Here’s how that code renders:

Getting started pages:

• Getting started with the Documentation Theme for Jekyll (page 3)

• About the theme's author (page 23)

• About Ruby, Gems, Bundler, and other prerequisites (page 29)

• Install Jekyll on Mac (page 37)

• Pages (page 45)

• Posts (page 52)

• Release notes 5.0 (page 27)

• Release notes 6.0 (page 25)

• Sidebar Navigation (page 72)

• Support (page 24)

• Supported features (page 18)

If you want to sort the pages alphabetically, you have to apply a sort filter:

Tags PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 89

Getting started pages:

{% assign sorted_pages = site.pages | sort: 'title' %}
{% for page in sorted_pages %}
{% for tag in page.tags %}
{% if tag == "getting_started" %}
{{page.title}}</l
i>
{% endif %}
{% endfor %}
{% endfor %}

Here’s how that code renders:

Getting started pages:

• About Ruby, Gems, Bundler, and other prerequisites (page 29)

• About the theme's author (page 23)

• Getting started with the Documentation Theme for Jekyll (page 3)

• Install Jekyll on Mac (page 37)

• Pages (page 45)

• Posts (page 52)

• Release notes 5.0 (page 27)

• Release notes 6.0 (page 25)

• Sidebar Navigation (page 72)

• Support (page 24)

• Supported features (page 18)

Efficiency
Although the tag approach here uses for loops, these are somewhat inefficient
on a large site. Most of my tech doc projects don’t have hundreds of pages (like
my blog does). If your project does have hundreds of pages, this for loop
approach with tags is going to slow down your build times.

Without the ability to access pages inside a universal namespace with the page
type, there aren’t many workarounds here for faster looping.

Tags PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 90

With posts (instead of pages), since you can access just the posts inside
posts.tag.tagname , you can be a lot more efficient with the looping.

Still, if the build times are getting long (e.g., 1 or 2 minutes per build), look into
reducing the number of for loops on your site.

Empty tags?
If your page shows “tags:” at the bottom without any value, it could mean a
couple of things:

• You’re using a tag that isn’t specified in your allowed tags list in your
tags.yml file.

• You have an empty tags: [] property in your frontmatter.

If you don’t want tags to appear at all on your page, remove the tags property
from your frontmatter.

Remembering the right tags
Since you may have many tags and find it difficult to remember what tags are
allowed, I recommend creating a template that prepopulates all your frontmatter
with all possible tags. Then just remove the tags that don’t apply.

See WebStorm Text Editor (page 67) for tips on creating file templates in
WebStorm.

Tags PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 91

Series
Summary: You can automatically link together topics belonging to
the same series. This helps users know the context within a particular
process.

Using series for pages
You create a series by looking for all pages within a tag namespace that contain
certain frontmatter. Here’s a demo (page 0).

1. Create the series button
First create an include that contains your series button:

<div class="seriesContext">
<div class="btn-group">

<button type="button" data-toggle="dropdown" class="bt
n btn-primary dropdown-toggle">Series Demo <span class="care
t"></button>

<ol class="dropdown-menu">
{% assign pages = site.pages | sort:"weight" %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% if p.url == page.url %}
<li class="active"> → {{p.weight}}. {{p.title}}</l

i>
{% else %}

{{p.weigh
t}}. {{p.title}}

{% endif %}
{% endif %}
{% endfor %}

</div>

</div>

Change “ACME series” to the name of your series.

Series PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 92

http://localhost:4010/mydoc-pdf/mydoc_seriesdemo1.html

Save this in your _includes/custom folder as something like series_acme.html.

 Warning: With pages, there isn’t a universal namespace created from tags
or categories like there is with Jekyll posts. As a result, you have to loop
through all pages. If you have a lot of pages in your site (e.g., 1,000+), then
this looping will create a slow build time. If this is the case, you will need to
rethink the approach to looping here.

2. Create the “next” include
Now create another include for the Next button at the bottom of the page. Copy
the following code, changing the series name to your series’name:

<p>{% assign series_pages = site.tags.series_acme %}
{% for p in pages %}
{% if p.series == "ACME series" %}
{% assign nextTopic = page.weight | plus: "1" %}
{% if p.weight == nextTopic %}
<button type="button" class="btn btn-pr

imary">Next: {{p.weight}} {{p.title}}</button>
{% endif %}
{% endif %}
{% endfor %}

</p>

Change “acme” to the name of your series.

Save this in your _includes/custom/mydoc folder as series_acme_next.html.

3. Add the correct frontmatter to each of your series
pages
Now add the following frontmatter to each page in the series:

series: "ACME series"
weight: 1.0

With weights, Jekyll will treat 10 as coming after 1. If you have more than 10
items, consider changing plus: "1.0" to plus: "0.1" .

Series PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 93

Additionally, if your page names are prefaced with numbers, such as “1.
Download the code,” then the {{p.weight}} will create a duplicate number. In
that case, just remove the {{p.weight}} from both code samples here.

4. Add links to the series button and next button on
each page.
On each series page, add a link to the series button at the top and a link to the
next button at the bottom.

<!-- your frontmatter goes here -->

{% include custom/series_acme.html %}

<!-- your page content goes here ... -->

{% include custom/series_acme_next.html %}

Changing the series drop-down color
The Bootstrap menu uses the primary class for styling. If you change this class
in your theme, the Bootstrap menu should automatically change color as well. You
can also just use another Bootstrap class in your button code. Instead of btn-

primary , use btn-info or btn-warning . See Labels (page 117) for more
Bootstrap button classes.

Using a collection with your series
Instead of copying and pasting the button includes on each of your series, you
could also create a collection and define a layout for the collection that has the
include code. For more information on creating collections, see Collections (page
65) for more details.

Series PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 94

Tooltips
Summary: You can add tooltips to any word, such as an acronym or
specialized term. Tooltips work well for glossary definitions, because
you don't have to keep repeating the definition, nor do you assume
the reader already knows the word's meaning.

Creating tooltips
Because this theme is built on Bootstrap, you can simply use a specific attribute
on an element to insert a tooltip.

Suppose you have a glossary.yml file inside your _data folder. You could pull in
that glossary definition like this:

<a href="#" data-toggle="tooltip" data-original-title="{{site.d
ata.glossary.jekyll_platform}}">Jekyll is my favorite tool
for building websites.

This renders to the following:

Jekyll is my favorite tool for building websites.

Tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 95

Alerts
Summary: You can insert notes, tips, warnings, and important alerts
in your content. These notes make use of Bootstrap styling and are
available through data references such as site.data.alerts.note.

About alerts
Alerts are little warnings, info, or other messages that you have called out in
special formatting. In order to use these alerts or callouts, reference the
appropriate value stored in the alerts.yml file as described in the following
sections.

Alerts
Similar to inserting images (page 111), you insert alerts through various includes
that have been developed. These includes provide templates through which you
pass parameters to easily populate the right HTML code.

{% include note.html content="This is my note. All the content
I type here is treated as a single paragraph." %}

Here’s the result:

 Note: This is my note. All the content I type here is treated as a single
paragraph.

With alerts, there’s just one include property:

Property description

content The content for the alert.

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 96

Using block level tags inside the alerts
If you need multiple paragraphs, enter

 tags. This is because block
level tags aren’t allowed here, as Kramdown is processing the content as
Markdown despite the fact that the content is surrounded by HTML tags. Here’s
an example with a break:

{% include note.html content="This is my note. All the content
I type here is treated as a single paragraph.

 Now
I'm typing on a new line." %}

Here’s the result:

 Note: This is my note. All the content I type here is treated as a single
paragraph.

Now I’m typing on a new line.

The include uses markdown="span" as an attribute, which means kramdown will
process the entire content as a span. You can’t use block elements such as p

or div or pre . If you need these elements, you can either manually surround the
content with the HTML from the include, or you can use these tags:

{{site.data.alerts.note}}
<p>This is my note.</p>
<pre>
def foo(x):

 return x+1
</pre>
{{site.data.alerts.end}}

Result:

 Note:
This is my note.

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 97

def foo(x):

return x+1

The same Bootstrap code from the alert is stored in yaml files inside the _data
folder. (This was how I previously implemented this code, but since this method
was prone to error and didn’t trigger any build warnings or failures when
incorrectly coded, I changed the approach to use includes instead.)

Types of alerts available
There are four types of alerts you can leverage:

• note.html

• tip.html

• warning.html

• important.html

They function the same except they have a different color, icon, and alert word.
You include the different types by selecting the include template you want. Here
are samples of each alert:

 Note: This is my note.

 Tip: This is my tip.

 Warning: This is my warning.

 Important: This is my important info.

These alerts leverage includes stored in the _include folder. The content option
is a parameter that you pass to the include. In the include, the parameter is
passed like this:

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 98

<div markdown="span" class="alert alert-info" role="alert"><i c
lass="fa fa-info-circle"></i> Note: {{include.conten
t}}</div>

The content in content="This is my note." gets inserted into the
{{include.content}}} part of the template. You can follow this same pattern

to build additional includes. See this Jekyll screencast on includes or this
screencast for more information.

Callouts
There’s another type of callout available called callouts. This format is typically
used for longer callout that spans more than one or two paragraphs, but really it’s
just a stylistic preference whether to use an alert or callout.

Here’s the syntax for a callout:

{% include callout.html content="This is my callout. It has a b
order on the left whose color you define by passing a type para
meter. I typically use this style of callout when I have more i
nformation that I want to share, often spanning multiple paragr
aphs. " type="primary" %}

Here’s the result:

This is my callout. It has a border on the left whose color you define by
passing a type parameter. I typically use this style of callout when I have
more information that I want to share, often spanning multiple paragraphs.

The available properties for callouts are as follows:

Property description

content The content for the callout.

type The style for the callout. Options are danger , default , prima-

ry , success , info , and warning .

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 99

http://jekyll.tips/jekyll-casts/includes/
https://www.youtube.com/watch?v=TJcn_PJ2100
https://www.youtube.com/watch?v=TJcn_PJ2100

The types just define the color of the left border. Each of these callout types get
inserted as a class name in the callout template. These class names correspond
with styles in Bootstrap. These classes are common Bootstrap class names
whose style attributes differ depending on your Bootstrap theme and style
definitions.

Here’s an example of each different type of callout:

This is my danger type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my default type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my primary type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my success type callout. It has a border on the left whose color
you define by passing a type parameter.

This is my info type callout. It has a border on the left whose color you
define by passing a type parameter.

This is my warning type callout. It has a border on the left whose color you
define by passing a type parameter.

Now that in contrast to alerts, callouts don’t include the alert word (note, tip,
warning, or important). You have to manually include it inside content if you
want it.

To include paragraph breaks, use

 inside the callout:

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 100

{% include callout.html content="**Important information**: Thi
s is my callout. It has a border on the left whose color you de
fine by passing a type parameter. I typically use this style o
f callout when I have more information that I want to share, of
ten spanning multiple paragraphs.

Here I am starting
a new paragraph, because I have lots of information to share. Y
ou may wonder why I'm using line breaks instead of paragraph ta
gs. This is because Kramdown processes the Markdown here as a s
pan rather than a div (for whatever reason). Be grateful that y
ou can be using Markdown at all inside of HTML. That's usually
not allowed in Markdown syntax, but it's allowed here." type="p
rimary" %}

Here’s the result:

Important information: This is my callout. It has a border on the left
whose color you define by passing a type parameter. I typically use this
style of callout when I have more information that I want to share, often
spanning multiple paragraphs.

Here I am starting a new paragraph, because I have lots of information to
share. You may wonder why I’m using line breaks instead of paragraph
tags. This is because Kramdown processes the Markdown here as a span
rather than a div (for whatever reason). Be grateful that you can be using
Markdown at all inside of HTML. That’s usually not allowed in Markdown
syntax, but it’s allowed here.

Use Liquid variables inside parameters with includes
Suppose you have a product name or some other property that you’re storing as a
variable in your configuration file (_config.yml), and you want to use this variable in
the content parameter for your alert or callout. You will get an error if you use
Liquid syntax inside a include parameter. For example, this syntax will produce an
error:

{% include note.html content="The {{site.company}} is pleased t
o announce an upcoming release." %}

The error will say something like this:

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 101

Liquid Exception: Invalid syntax for include tag. File contain
s invalid characters or sequences: ... Valid syntax: {% includ
e file.ext param='value' param2='value' %}

To use variables in your include parameters, you must use the “variable
parameter” approach. First you use a capture tag to capture some content.
Then you reference this captured tag in your include. Here’s an example.

In my site configuration file (_congfig.yml), I have a property called
company_name .

company_name: Your company

I want to use this variable in my note include.

First, before the note I capture the content for my note’s include like this:

{% capture company_note %}The {{site.company_name}} company is
pleased to announce an upcoming release.{% endcapture %}

Now reference the company_note in your include parameter like this:

{% include note.html content=company_note}

Here’s the result:

 Note: The CityTeam Ministries is pleased to announce an upcoming
release.

Note the omission of quotation marks with variable parameters.

Also note that instead of storing the variable in your site’s configuration file, you
could also put the variable in your page’s frontmatter. Then instead of using
{{site.company_name}} you would use {{page.company_name}} .

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 102

Markdown inside of callouts and alerts
You can use Markdown inside of callouts and alerts, even though this content
actually gets inserted inside of HTML in the include. This is one of the advantages
of kramdown Markdown. The include template has an attribute of
markdown="span" that allows for the processor to parse Markdown inside of

HTML.

Validity checking
If you have some of the syntax wrong with an alert or callout, you’ll see an error
when Jekyll tries to build your site. The error may look like this:

Liquid Exception: Invalid syntax for include tag: content="Thi
s is my **info** type callout. It has a border on the left whos
e color you define by passing a type parameter. type="info" Val
id syntax: {% include file.ext param='value' param2='value' %}
in mydoc/mydoc_alerts.md

These errors are a good thing, because it lets you know there’s an error in your
syntax. Without the errors, you may not realize that you coded something
incorrectly until you see the lack of alert or callout styling in your output.

In this case, the quotation marks aren’t set correctly. I forgot the closing quotation
mark for the content parameter include.

Blast a warning to users on every page
If you want to blast a warning to users on every page, add the alert or callout to
the _layouts/page.html page right below the frontmatter. Every page using the
page layout (all, by default) will show this message.

Alerts PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 103

Icons
Summary: You can integrate font icons through the Font Awesome
and Glyphical Halflings libraries. These libraries allow you to embed
icons through their libraries delivered as a link reference. You don't
need any image libraries downloaded in your project.

Font icon options
The theme has two font icon sets integrated: Font Awesome and Glyphicons
Halflings. The latter is part of Bootstrap, while the former is independent. Font
icons allow you to insert icons drawn as vectors from a CDN (so you don’t have
any local images on your own site).

External icons
When you link to an external site, like Jekyll , an icon appears after the link. If you
want to remove this icon, comment out this style in css/customstyles.css.

/* this part adds an icon after external links, using FontAweso
me*/
a[href^="http://"]:after, a[href^="https://"]:after {

content: "\f08e";
font-family: FontAwesome;
font-weight: normal;
font-style: normal;
display: inline-block;
text-decoration: none;
padding-left: 3px;

}

See Font Awesome icons available
Go to the Font Awesome library to see the available icons.

The Font Awesome icons allow you to adjust their size by simply adding fa-2x ,
fa-3x and so forth as a class to the icon to adjust their size to two times or three

times the original size. As vector icons, they scale crisply at any size.

Here’s an example of how to scale up a camera icon:

Icons PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 104

http://jekyllrb.com/
http://fortawesome.github.io/Font-Awesome/icons/

<i class="fa fa-camera-retro"></i> normal size (1x)
<i class="fa fa-camera-retro fa-lg"></i> fa-lg
<i class="fa fa-camera-retro fa-2x"></i> fa-2x
<i class="fa fa-camera-retro fa-3x"></i> fa-3x
<i class="fa fa-camera-retro fa-4x"></i> fa-4x
<i class="fa fa-camera-retro fa-5x"></i> fa-5x

Here’s what they render to:

 1x  fa-lg fa-2x fa-3x fa-4x fa-5x

With Font Awesome, you always use the i tag with the appropriate class. You
also implement fa as a base class first. You can use font awesome icons inside
other elements. Here I’m using a Font Awesome class inside a Bootstrap alert:

<div class="alert alert-danger" role="alert"><i class="fa fa-ex
clamation-circle"></i> Warning: This is a special warnin
g message.

Here’s the result:

 This is a special warning message.

The notes, tips, warnings, etc., are pre-coded with Font Awesome and stored in
the alerts.yml file. That file includes the following:

Icons PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 105

tip: '<div class="alert alert-success" role="alert"><i class="f
a fa-check-square-o"></i> Tip: '
note: '<div class="alert alert-info" role="alert"><i class="fa
fa-info-circle"></i> Note: '
important: '<div class="alert alert-warning" role="alert"><i cl
ass="fa fa-warning"></i> Important: '
warning: '<div class="alert alert-danger" role="alert"><i clas
s="fa fa-exclamation-circle"></i> Warning: '
end: '</div>'

callout_danger: '<div class="bs-callout bs-callout-danger">'
callout_default: '<div class="bs-callout bs-callout-default">'
callout_primary: '<div class="bs-callout bs-callout-primary">'
callout_success: '<div class="bs-callout bs-callout-success">'
callout_info: '<div class="bs-callout bs-callout-info">'
callout_warning: '<div class="bs-callout bs-callout-warning">'

hr_faded: '<hr class="faded"/>'
hr_shaded: '<hr class="shaded"/>'

This means you can insert a tip, note, warning, or important alert simply by using
these tags.

{% include note.html content="Add your note here." %}

{% include tip.html content="Add your tip here." %}

{% include important.html content="Add your important info her
e." %}

{% include warning.html content="Add your warning here." %}

Here’s the result:

 Note: Add your note here.

 Tip: Here’s my tip.

Icons PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 106

 Important: This information is very important.

 Warning: If you overlook this, you may die.

The color scheme is the default colors from Bootstrap. You can modify the icons
or colors as needed.

Creating your own combinations
You can innovate with your own combinations. Here’s a similar approach with a
file download icon:

<div class="alert alert-success" role="alert"><i class="fa fa-d
ownload fa-lg"></i> This is a special tip about some file to do
wnload....</div>

And the result:

 This is a special tip about some file to download....

Grab the right class name from the Font Awesome library and then implement it
by following the pattern shown previously.

If you want to make your fonts even larger than the 5x style, add a custom style to
your stylesheet like this:

.fa-10x{font-size:1700%;}

Then any element with the attribute fa-10x will be enlarged 1700%.

Glyphicon icons available
Glyphicons work similarly to Font Awesome. Go to the Glyphicons library to see
the icons available.

Icons PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 107

http://fortawesome.github.io/Font-Awesome/icons/
http://getbootstrap.com/components/#glyphicons

Although the Glyphicon Halflings library doesn’t provide the scalable classes like
Font Awesome, there’s a StackOverflow trick to make the icons behave in a
similar way. This theme’s stylesheet (customstyles.css) includes the following to
the stylesheet:

.gi-2x{font-size: 2em;}

.gi-3x{font-size: 3em;}

.gi-4x{font-size: 4em;}

.gi-5x{font-size: 5em;}

Now you just add gi-5x or whatever to change the size of the font icon:

And here’s the result:


Glypicons use the span element instead of i to attach their classes.

Here’s another example:



And magnified:


You can also put glyphicons inside other elements:

Icons PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 108

http://stackoverflow.com/questions/24960201/how-do-i-make-glyphicons-bigger-change-size

<div class="alert alert-danger" role="alert">
<span class="glyphicon glyphicon-exclamation-sign" aria-hidde

n="true">
Error: Enter a valid email address

</div>

 Error: Enter a valid email address

Callouts
The previously shown alerts might be fine for short messages, but with longer
notes, the solid color takes up a bit of space. In this theme, you also have the
option of using callouts, which are pretty common in Bootstrap’s documentation
but surprisingly not offered as an explicit element. Their styles have been copied
into this theme, in a way similar to the alerts:

<div class="bs-callout bs-callout-info">
This is a special info message. This is a special info messag

e. This is a special info message. This is a special info messa
ge. This is a special info message. This is a special info mess
age. This is a special info message. This is a special info mes
sage. This is a special info message. </div>

 This is a special info message. This is a special info message. This is a
special info message. This is a special info message. This is a special info
message. This is a special info message. This is a special info message. This
is a special info message. This is a special info message.

And here’s the shortcode:

{{site.data.alerts.callout_info}This is a special callout infor
mation message.{{site.data.alerts.end}}

Here’s the result:

Icons PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 109

This is a special callout information message.

You can use any of the following:

{{site.data.alerts.callout_default}}
{{site.data.alerts.callout_primary}}
{{site.data.alerts.callout_success}}
{{site.data.alerts.callout_info}}
{{site.data.alerts.callout_warning}}

The only difference is the color of the left bar.

Callouts are explained in a bit more detail in Alerts (page 96).

Icons PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 110

Images
Summary: Store images in the images folder and use the image.html
include to insert images. This include has several options, including
figcaptions, that extract the content from the formatting.

Image Include Template
Instead of using Markdown or HTML syntax directly in your page for images, the
syntax for images has been extracted out into an image include that allows you to
pass the parameters you need. Include the image.html like this:

{% include image.html file="jekyll.png" url="http://jekyllrb.co
m" alt="Jekyll" caption="This is a sample caption" %}

The available include properties are as follows:

Property description

file The name of the file. Store it in the /images folder. If you want to or-
ganize your images in subfolders, reference the subfolder path
here, like this: mysubfolder/jekyllrb.png

url Whether to link the image to a URL

alt Alternative image text for accessibility and SEO

caption A caption for the image

max-
width

a maximum width for the image (in pixels). Just specify the number,
not px.

The properties of the include get populated into the image.html template.

Here’s the result:

Images PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 111

http://jekyllrb.com/
http://jekyllrb.com/

This is a sample caption

Inline image includes
For inline images, such as with a button that you want to appear inline with text,
use the inline_image.html include, like this:

Click the **Android SDK Manager** button {% include inline_imag
e.html
file="androidsdkmanagericon.png" alt="SDK button" %}

Click the Android SDK Manager button

The inline_image.html include properties are as follows:

Property description

file The name of the file

type The type of file (png, svg, and so on)

alt Alternative image text for accessibility and SEO

SVG Images
You can also embed SVG graphics. If you use SVG, you need to use the HTML
syntax so that you can define a width/container for the graphic. Here’s a sample
embed:

{% include image.html file="helpapi.svg" url="http://idratherbe
writing.com/documentation-theme-jekyll/mydoc_help_api/" alt="Bu
ilding a Help API" caption="A help API provides a JSON file at
a web URL with content that can be pulled into different target
s" max-width="600" %}

Here’s the result:

Images PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 112

sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

Getting Started
text sample help text
sample help text sample
help text sample help
text sample help text
sample help text sample

Learning Course
sample help text sample help
text sample help text sample
help text sample help text
sample help text sample help

sample help
text sample
help text
sample help
text sample
help text
sample help
text sample

Help API

 pullin
g fr

om A
PI

 p
ul

lin
g

fr
om

 A
PI

 pulling from API

 pulling from
 A

PI

website #1

website #2

website #4

website #3

A help API provides a JSON file at a web URL with content that can be
pulled into different targets

The stylesheet even handles SVG display in IE 9 and earlier through the following
style (based on this gist):

Images PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 113

http://idratherbewriting.com/documentation-theme-jekyll/mydoc_help_api/
http://idratherbewriting.com/documentation-theme-jekyll/mydoc_help_api/
https://gist.github.com/larrybotha/7881691

/*
* Let's target IE to respect aspect ratios and sizes for img t

ags containing SVG files
*
* [1] IE9
* [2] IE10+
*/

/* 1 */
.ie9 img[src$=".svg"] {

width: 100%;
}
/* 2 */
@media screen and (-ms-high-contrast: active), (-ms-high-contra
st: none) {

img[src$=".svg"] {
width: 100%;

}
}

Also, if you’re working with SVG graphics, note that Firefox does not support SVG
fonts. In Illustrator, when you do a Save As with your AI file and choose SVG, to
preserve your fonts, in the Font section, select “Convert to outline” as the Type
(don’t choose SVG in the Font section).

Also, remove the check box for “Use textpath element for text on a path”. And
select “Embed” rather than “Link.” The following screenshot shows the settings I
use. Your graphics will look great in Firefox.

Images PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 114

Essential options for SVG with Illustrator

Images PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 115

Code samples
Summary: You can use fenced code blocks with the language
specified after the first set of backtick fences.

Code Samples
Use fenced code blocks with the language specified, like this:

```js
console.log('hello');
````

Result:

console.log('hello');

For the list of supported languages you can use (similar to js for JavaScript), see
Supported languages .

Code samples PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 116

https://github.com/jneen/rouge/wiki/list-of-supported-languages-and-lexers

Labels
Summary: Labels are just a simple Bootstrap component that you
can include in your pages as needed. They represent one of many
Bootstrap options you can include in your theme.

About labels
Labels might come in handy for adding button-like tags next to elements, such as
POST, DELETE, UPDATE methods for endpoints. You can use any classes from
Bootstrap in your content.

Default
Primary
Success
Info
Warning
Danger

Default Primary Success Info Warning Danger

You can have a label appear within a heading simply by including the span tag in
the heading. However, you can’t mix Markdown syntax with HTML, so you’d have
to hard-code the heading ID for the auto-TOC to work.

Labels PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 117

Links
Summary: When creating links, you can use standard HTML or
Markdown formatting. However, you can also implement an
automated approach to linking that makes linking much less error-
prone (meaning less chances of broken links in your output) and
requiring less effort.

Create an external link
When linking to an external site, use Markdown formatting because it’s simplest:

[Google](http://google.com)

Linking to internal pages
When linking to internal pages, you can manually link to the pages like this:

[Icons](mydoc_icons.html)

If you change the file name, you’ll have to update all of your links.

Links PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 118

Navtabs
Summary: Navtabs provide a tab-based navagation directly in your
content, allowing users to click from tab to tab to see different panels
of content. Navtabs are especially helpful for showing code samples
for different programming languages. The only downside to using
navtabs is that you must use HTML instead of Markdown.

Common uses
Navtabs are particularly useful for scenarios where you want to show a variety of
options, such as code samples for Java, .NET, or PHP, on the same page.

While you could resort to single-source publishing to provide different outputs for
each unique programming language or role, you could also use navtabs to allow
users to select the content you want.

Navtabs are better for SEO since you avoid duplicate content and drive users to
the same page.

Navtabs demo
The following is a demo of a navtab. Refresh your page to see the tab you
selected remain active.

Profile
Praesent sit amet fermentum leo. Aliquam feugiat,

1. nibh in u ltrices mattis

2. felis ipsum venenatis metus, vel vehicula libero mauris a enim. Sed
placerat est ac lectus vestibulum tempor.

• Quisque ut condimentum massa.

• ut condimentum massa.

Profile About Match

Navtabs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 119

Proin venenatis leo id urna cursus blandit. Vivamus sit
amet hendrerit metus.

Code
Here’s the code for the above (with the filler text abbreviated):

<ul id="profileTabs" class="nav nav-tabs">
<li class="active">Pro

file
About
Match

<div class="tab-content">

<div role="tabpanel" class="tab-pane active" id="profile">
<h2>Profile</h2>

<p>Praesent sit amet fermentum leo....</p>
</div>

<div role="tabpanel" class="tab-pane" id="about">
<h2>About</h2>
<p>Lorem ipsum ...</p></div>

<div role="tabpanel" class="tab-pane" id="match">
<h2>Match</h2>
<p>Vel vehicula</p>

</div>
</div>

Design constraints
Bootstrap automatically clears any floats after the navtab. Make sure you aren’t
trying to float any element to the right of your navtabs, or there will be some
awkward space in your layout.

Navtabs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 120

Appearance in the mini-TOC
If you put a heading in the navtab content, that heading will appear in the mini-
TOC as long as the heading tag has an ID. If you don’t want the headings for each
navtab section to appear in the mini-TOC, omit the ID attribute from the heading
tag. Without this ID attribute in the heading, the mini-TOC won’t insert the heading
title into the mini-TOC.

Must use HTML
You must use HTML within the navtab content because each navtab section is
surrounded with HTML, and you can’t use Markdown inside of HTML.

Match up ID tags
Each tab’s href attribute must match the id attribute of the tab content’s div

section. So if your tab has href="#acme" , then you add acme as the ID attribute
in <div role="tabpanel" class="tab-pane" id="acme"> .

Set an active tab
One of the tabs needs to be set as active, depending on what tab you want to be
open by default (usually the first one).

<div role="tabpanel" class="tab-pane active" id="acme">

Sets a cookie
The navtabs are part of Bootstrap, but this theme sets a cookie to remember the
last tab’s state. The js/customscripts.js file has a long chunk of JavaScript that
sets the cookie. The JavaScript comes from this StackOverflow thread .

By setting a cookie, if the user refreshes the page, the active tab is the tab the
user last selected (rather than defaulting to the default active tab).

Navtabs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 121

http://stackoverflow.com/questions/10523433/how-do-i-keep-the-current-tab-active-with-twitter-bootstrap-after-a-page-reload

Functionality to implement
One piece of functionality I’d like to implement is the ability to set site-wide nav
tab options. For example, if the user always chooses PHP instead of Java in the
code samples, it would be great to set this option site-wide by default. However,
this functionality isn’t yet coded.

Navtabs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 122

Tables
Summary: You can format tables using either multimarkdown syntax
or HTML. You can also use jQuery datatables (a plugin) if you need
more robust tables.

Multimarkdown Tables
You can use Multimarkdown syntax for tables. The following shows a sample:

Priority apples	Second priority	Third priority
ambrosia	gala	red delicious
pink lady	jazz	macintosh
honeycrisp	granny smith	fuji

Result:

Priority apples Second priority Third priority

ambrosia gala red delicious

pink lady jazz macintosh

honeycrisp granny smith fuji

 Note: You can’t use block level tags (paragraphs or lists) inside Markdown
tables, so if you need separate paragraphs inside a cell, use

.

HTML Tables
If you need a more sophisticated table syntax, use HTML syntax for the table.
Although you’re using HTML, you can use Markdown inside the table cells by
adding markdown="span" as an attribute for the td tag, as shown in the
following table. You can also control the column widths.

Tables PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 123

<table>
<colgroup>
<col width="30%" />
<col width="70%" />
</colgroup>
<thead>
<tr class="header">
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td markdown="span">First column **fields**</td>
<td markdown="span">Some descriptive text. This is a markdown l
ink to [Google](http://google.com). Or see [some link][mydoc_ta
gs].</td>
</tr>
<tr>
<td markdown="span">Second column **fields**</td>
<td markdown="span">Some more descriptive text.
</td>
</tr>
</tbody>
</table>

Result:

Field Description

First column fields Some descriptive text. This is a markdown link to
Google . Or see some link (page 86).

Second column
fields

Some more descriptive text.

jQuery DataTables
You also have the option of using a jQuery DataTable , which gives you some
additional capabilities. To use a jQuery DataTable in a page, include datatable:

true in a page’s frontmatter. This tells the default layout to load the necessary
CSS and javascript bits and to include a $(document).ready() function that
initializes the DataTables library.

Tables PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 124

http://google.com/
https://www.datatables.net/

You can change the options used to initialize the DataTables library by editing the
call to $('table.display').DataTable() in the default layout. The available
options for Datatables are described in the DataTable documentation , which is
excellent.

You also must add a class of display to your tables. You can change the class,
but then you’ll need to change the trigger defined in the $(document).ready()

function in the default layout from table.display to the class you prefer.

You can also add page-specific triggers (by copying the <script></script>

block from the default layout into the page) and classes, which lets you use
different options on different tables.

If you use an HTML table, adding class="display" to the <table> tag is
sufficient.

Markdown, however, doesn’t allow you to add classes to tables, so you’ll need to
use a trick: add <div class="datatable-begin"></div> before the table and
<div class="datatable-end"></div> after the table. The default layout

includes a jQuery snippet that automagically adds the display class to any table
it finds between those two markers. So you can start with this (we’ve trimmed the
descriptions for display):

<div class="datatable-begin"></div>

Food | Description | Category | Sa
mple type
------- | ------------------------------------- | -------- |

Apples | A small, somewhat round ... | Fruit | Fu
ji
Bananas | A long and curved, often-yellow ... | Fruit | Sn
ow
Kiwis | A small, hairy-skinned sweet ... | Fruit | Go
lden
Oranges | A spherical, orange-colored sweet ... | Fruit | Na
vel

<div class="datatable-end"></div>

and get this:

Tables PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 125

https://www.datatables.net/manual/options

Food Description Category Sample
type

Apples A small, somewhat round and often red-col-
ored, crispy fruit grown on trees.

Fruit Fuji

Bananas A long and curved, often-yellow, sweet and
soft fruit that grows in bunches in tropical cli-
mates.

Fruit Snow

Kiwis A small, hairy-skinned sweet fruit with green-
colored insides and seeds.

Fruit Golden

Oranges A spherical, orange-colored sweet fruit com-
monly grown in Florida and California.

Fruit Navel

Notice a few features:

• You can keyword search the table. When you type a word, the table filters
to match your word.

• You can sort the column order.

• You can page the results so that you show only a certain number of
values on the first page and then require users to click next to see more
entries.

Read more of the DataTable documentation to get a sense of the options you can
configure. You should probably only use DataTables when you have long, massive
tables full of information.

 Note: Try to keep the columns to 3 or 4 columns only. If you add 5+
columns, your table may create horizontal scrolling with the theme.
Additionally, keep the column heading titles short.

Tables PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 126

https://www.datatables.net/manual/options

Syntax highlighting
Summary: You can apply syntax highlighting to your code. This
theme uses pygments and applies color coding based on the lexer
you specify.

About syntax highlighting
For syntax highlighting, use fenced code blocks optionally followed by the
language syntax you want:

```java
import java.util.Scanner;

public class ScannerAndKeyboard
{

public static void main(String[] args)
{        Scanner s = new Scanner(System.in);

System.out.print( "Enter your name: "  );
String name = s.nextLine();
System.out.println( "Hello " + name + "!" );

}
}
```

This looks as follows:

Syntax highlighting PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 127

import java.util.Scanner;

public class ScannerAndKeyboard
{

public static void main(String[] args)
{ Scanner s = new Scanner(System.in);

System.out.print("Enter your name: ");
String name = s.nextLine();
System.out.println("Hello " + name + "!");

}
}

Fenced code blocks require a blank line before and after.

If you’re using an HTML file, you can also use the highlight command with
Liquid markup.

{% highlight java %}
import java.util.Scanner;

public class ScannerAndKeyboard
{

public static void main(String[] args)
{ Scanner s = new Scanner(System.in);

System.out.print("Enter your name: ");
String name = s.nextLine();
System.out.println("Hello " + name + "!");

}
}
{% endhighlight %}

Result:

Syntax highlighting PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 128

import java.util.Scanner;

public class ScannerAndKeyboard
{

public static void main(String[] args)
{ Scanner s = new Scanner(System.in);

System.out.print("Enter your name: ");
String name = s.nextLine();
System.out.println("Hello " + name + "!");

}
}

The theme has syntax highlighting specified in the configuration file as follows:

highlighter: rouge

The syntax highlighting is done via the css/syntax.css file.

Available lexers
The keywords you must add to specify the highlighting (in the previous example,
ruby) are called “lexers.” You can search for “lexers.” Here are some common

ones I use:

• js

• html

• yaml

• css

• json

• php

• java

• cpp

• dotnet

• xml

• http

Syntax highlighting PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 129

Workflow maps
Summary: Version 6.0 of the Documentation theme for Jekyll reverts
back to relative links so you can view the files offline. Additionally, you
can store pages in subdirectories. Templates for alerts and images
are available.

Workflow maps overview
You can implement workflow maps at the top of your pages. This is helpful if
you’re describing a process that involves multiple topics. See the following
demos:

• Simple workflow maps (page 0)

• Complex workflow maps (page 0)

Simple workflow maps
1. Create an include at _includes/custom/usermap.html, where

usermap.html contains the workflow and links you want. See the
usermap.html as an example. It should look something like this:

<div id="userMap">
<div class="content"><div clas
s="box box1">Connect to ADB</div></div>
<div class="arrow">→</div>
<div class="content"><div clas
s="box box2">Download and Build the Starter Kit</di
v></div>
<div class="arrow">→</div>
<div class="content"><div clas
s="box box3">Take a Tour</div></div>
<div class="arrow">→</div>
<div class="content"><div clas
s="box box4">Load Your Widgets</div></div>
<div class="arrow">→</div>
<div class="content"><div clas
s="box box5">Query for Something</div></div>
<div class="clearfix"></div>
</div>

Workflow maps PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 130

http://localhost:4010/mydoc-pdf/p2_sample1.html
http://localhost:4010/mydoc-pdf/p2_sample6.html

You can have only 5 possible workflow squares across. Also, the links
must be manually coded HTML like those shown, not automated
Markdown links. (This is because the boxes are linked.)

2. Where you want the user maps to appear, add the sidebar properties
shown in red below:

title: Sample 1 Topic
keywords: sample
summary: "This is just a sample topic..."
sidebar: product2_sidebar
permalink: p2_sample1
folder: product2

simple_map: true
map_name: usermap
box_number: 1

In the page.html layout, the following code gets activated when
simple_map equals true :

{% if page.simple_map == true %}

<script>
$(document).ready (function(){

$('.box{{page.box_number}}').addClass('active');
});

</script>

{% include custom/{{page.map_name}}.html %}

{% endif %}

The script adds an active class to the box number, which automatically
makes the active workflow box become highlighted based on the page
you’re viewing.

The map_name gets used as the name of the included file.

Workflow maps PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 131

Complex workflow maps
The simpler user workflow allows for 5 workflow steps. If you have a more
complex workflow, with multiple possible steps, branching, and more, consider
using a complex workflow map. This map uses modals to show a list of
instructions and links for each step.

1. Create an include at _includes/custom/usermapcomplex.html, where
usermapcomplex.html contains the workflow and links you want. See the
usermapcomplex.html as an example. The code in that file simply
implements Bootstrap modals to create the pop-up boxes. Add your
custom content inside the modal body:

<div class="modal-body">
<p>This is just dummy text ... Your first steps should b
e to get started. You will need to do the following:</p>

Sample 6
Sample 7
Sample 8

<p>If you run into any of these setup issues, you mu

st solve them before you can continue on.</p>

</div>

The existing usermapcomplex.html file just has 3 workflow square
modals. If you need more, duplicate the modal code. In the duplicated
code, make sure you make the following values in red unique (but the
same within the same modal):

<button type="button" class="btn btn-default btn-lg mod

alButton3" data-toggle="modal" data-target="#myModal3">P
ublish your app</button>

<div class="modal fade" id="myModal3" tabinde
x="-1" role="dialog" aria-labelledby="myModalLabel">

Workflow maps PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 132

2. For each topic where you want the modal to appear, insert the following
properties in your frontmatter:

title: Sample 6 Topic
keywords: sample
summary: "This is just a sample topic..."
sidebar: product2_sidebar
permalink: p2_sample6

complex_map: true
map_name: usermapcomplex
box_number: 1
toc: false
folder: product2

When your frontmatter contains complex_map equal to true , the
following code gets activated in the page layout.html file:

In the page.html layout, the following code gets activat
ed when `map` equals `true`:

{% if page.complex_map == true %}

<script>
$(document).ready (function(){

$('.modalButton{{page.box_number}}').addClass('a
ctive');

});
</script>

{% include custom/{{page.map_name}}.html %}

{% endif %}
```  ```

Workflow maps PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 133



Commenting on files
Summary: You can add a button to your pages that allows people to
add comments.

About the review process
If you’re using the doc as code approach, you might also consider using the same
techniques for reviewing the doc as people use in reviewing code. This approach
will involve using Github to edit the files.

There’s an Edit me button on each page on this theme. This button allows
collaborators to edit the content on Github.

Here’s the code for that button on the page.html layout for GitHub:

{% if site.github_editme_path %}

<a target="_blank" rel="noopener" href="https://github.com/{{si
te.github_editme_path}}/{{page.folder}}{{page.url | append: ".m
d"}}{% endif %}" class="btn btn-default githubEditButton" rol
e="button"><i class="fa fa-github fa-lg"></i> Edit me</a>

{% endif %}

and here for GitLab:

{% if site.gitlab_editme_path %}

<a target="_blank" rel="noopener" href="https://github.com/{{si
te.gitlab_editme_path}}/{{page.folder}}{{page.url | append: ".m
d"}}{% endif %}" class="btn btn-default githubEditButton" rol
e="button"><i class="fa fa-gitlab fa-lg"></i> Edit me</a>

{% endif %}

In your configuration file, edit the value for github_editme_path (or for Gitlab:
gitlab_editme_path ). For example, you might create a branch called “reviews”

on your Github repo. Then you would add something like this in your configuration

Commenting on files PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 134



file for the ‘github_editme_path’: tomjoht/documentation-theme-jekyll/edit/
reviews. Here “tomjoht” is my github account name. The repo name is
“documentation-theme-jekyll”. The “reviews” name is the branch.

To suppress this button, comment out the github_editme_path in the
_config.yml file.

Add reviewers as collaborators
If you want people to collaborate on your project so that their edits get committed
to a branch on your project, you need to add them as collaborators. For your
Github repo, click Settings and add the collaborators on the Collaborators tab
using their Github usernames.

If you don’t want to allow anyone to commit to your Github branch, don’t add the
reviewers as collaborators. When someone makes an edit, Github will fork the
theme. The person’s edit then will appear as a pull request to your repo. You can
then choose to merge the change indicated in the pull or not.

 Note: When you process pull requests, you have to accept everything or
nothing. You can’t pick and choose which changes you’ll merge. Therefore
you’ll probably want to edit the branch you’re planning to merge or ask the
contributor to make some changes to the fork before processing the pull
request.

Workflow
Users will make edits in your “reviews” branch (or whatever you want to call it).
You can then commit those edits as you make updates.

When you’re finished making all updates in the branch, you can merge the branch
into the master.

Note that if you’re making updates online, those updates will be out of sync with
any local edits.

 Warning: Don’t make edits both online using Github’s browser-based
interface AND offline on your local machine using your local tools. When you
try to push from your local, you’ll likely get a merge conflict error. Instead,
make sure you do a pull and update on your local after making any edits
online.

Commenting on files PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 135



Prose.io
Prose.io is an overlay on Github that would allow people to make comments in an
easier interface. If you simply go to prose.io , it asks to authorize your Github
account, and so it will read files directly from Github but in the Prose.io interface.

Commenting on files PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 136

http://prose.io/


Build arguments
Summary: You use various build arguments with your Jekyll project.
You can also create shell scripts to act as shortcuts for long build
commands. You can store the commands in iTerm as profiles as well.

How to build Jekyll sites
The normal way to build the Jekyll site is through the build command:

jekyll build

To build the site and view it in a live server so that Jekyll rebuilds that site each
time you make a change, use the serve command:

jekyll serve

By default, the _config.yml in the root directory will be used, Jekyll will scan the
current directory for files, and the folder _site will be used as the output. You
can customize these build commands like this:

jekyll serve --config configs/myspecialconfig.yml --destinatio
n ../doc_outputs

Here the configs/myspecialconfig.yml file is used instead of _config.yml .
The destination directory is ../doc_outputs , which would be one level up from
your current directory.

Shortcuts for the build arguments
If you have a long build argument and don’t want to enter it every time in Jekyll,
noting all your configuration details, you can create a shell script and then just run
the script. Simply put the build argument into a text file and save it with the .sh
extension (for Mac) or .bat extension (for Windows). Then run it like this:

Build arguments PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 137



. myscript.sh

My preference is to add the scripts to profiles in iTerm. See iTerm Profiles (page
170) for more details.

Stop a server
When you’re done with the preview server, press Ctrl+C to exit out of it. If you exit
iTerm or Terminal without shutting down the server, the next time you build your
site, or if you build multiple sites with the same port, you may get a server-
already-in-use message.

You can kill the server process using these commands:

ps aux | grep jekyll

Find the PID (for example, it looks like “22298”).

Then type kill -9 22298 where “22298” is the PID.

To kill all Jekyll instances, use this:

kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')

I recommend creating a profile in iTerm that stores this command. Here’s what the
iTerm settings look like:

Build arguments PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 138



iTerm profile settings to kill all Jekyll

Build arguments PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 139



Themes
Summary: You can choose between two different themes (one green,
the other blue) for your projects. The theme CSS is stored in the CSS
folder and configured in the configuration file for each project.

 Note: The gem-based theme approach is not yet integrated into this
theme.

Theme options
You can choose a green or blue theme, or you can create your own. In the css
folder, there are two theme files: theme-blue.css and theme-green.css. These files
have the most common CSS elements extracted in their own CSS file. Just
change the hex colors to the ones you want.

In the _includes/head.html file, specify the theme file you want the output to use
— for example, theme_file: theme-green.css . See this line:

<link rel="stylesheet" href="css/theme-green.css" />

Theme differences
The differences between the themes is fairly minimal. The main navigation bar,
sidebar, buttons, and heading colors change color. That’s about it.

In a more sophisticated theming approach, you could use Sass files to generate
rules based on options set in a data file, but I kept things simple here.

Themes PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 140

https://jekyllrb.com/docs/themes/


Generating PDFs
Summary: You can generate a PDF from your Jekyll project. You do
this by creating a web version of your project that is printer friendly.
You then use utility called Prince to iterate through the pages and
create a PDF from them. It works quite well and gives you complete
control to customize the PDF output through CSS, including page
directives and dynamic tags from Prince.

PDF overview
This process for creating a PDF relies on Prince XML to transform the HTML
content into PDF. Prince costs about $500 per license. That might seem like a lot,
but if you’re creating a PDF, you’re probably working for a company that sells a
product, so you likely have access to some resources. There’s also a free license
that prints a small “P” watermark on your title page, so if you’re fine with that,
great.

The basic approach is to generate a list of all web pages that need to be added to
the PDF, and then add leverage Prince to package them up into a PDF. Once you
set it up, building a pdf is just a matter of running a couple of commands. Also,
creating a PDF this way gives you a lot more control and customization
capabilities than with other methods for creating PDFs. If you know CSS, you can
entirely customize the output.

Demo
You can see an example of the finished product here:

 PDF Download

To generate the PDF, browse to the theme’s directory in your terminal and run this
script:

. pdf-mydoc.sh

This builds a PDF for the documentation in the theme. Look in the pdf folder for
the output, and see the “last generated date” to confirm that you generated the
PDF.

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 141

http://localhost:4010/mydoc-pdf/pdf/mydoc.pdf
http://localhost:4010/mydoc-pdf/pdf/mydoc.pdf


To build a PDF for the other sample projects, run these commands:

. pdf-product1.sh

or

. pdf-product2.sh

You can see the details of the script in these files in the theme’s root directory. For
example, open pdf-mydoc.sh. It contains the following:

# Note that .sh scripts work only on Mac. If you're on Window
s, install Git Bash and use that as your client.

echo 'Kill all Jekyll instances'
kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')
clear

echo "Building PDF-friendly HTML site for Mydoc ...";
bundle exec jekyll serve --detach --config _config.yml,pdfconfi
gs/config_mydoc_pdf.yml;
echo "done";

echo "Building the PDF ...";
prince --javascript --input-list=_site/pdfconfigs/prince-list.t
xt -o pdf/mydoc.pdf;

echo "Done. Look in the pdf directory to see if it printed succ
essfully."

After stopping all Jekyll instances, we build Jekyll using a special configuration file
that specifies a unique stylesheet. The build contains a file (prince-list.txt) that
contains a list of all pages to be included in the PDF. We feed this list into a Prince
command to build the PDF.

The following sections explain more about the setup.

1. Set up Prince
Download and install Prince .

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 142

http://www.princexml.com/doc/installing/


You can install a fully functional trial version. The only difference is that the title
page will have a small Prince PDF watermark.

2. Create a new configuration file for each of your PDF
targets
The PDF configuration file will build on the settings in the regular configuration file
but will some additional fields. Here’s the configuration file for the mydoc product
within this theme. This configuration file is located in the pdfconfigs folder.

destination: _site/
url: "http://127.0.0.1:4010"
baseurl: "/mydoc-pdf"
port: 4010
output: pdf
product: mydoc
print_title: Jekyll theme for documentation — mydoc product
print_subtitle: version 5.0
output: pdf
defaults:

-
scope:

path: ""
type: "pages"

values:
layout: "page_print"
comments: true
search: true

pdf_sidebar: mydoc_sidebar

 Note: Although you’re creating a PDF, you must still build an HTML web
target before running Prince. Prince will pull from the HTML files and from the
file-list for the TOC.

Note that the default page layout specified by this configuration file is
page_print . This layout strips out all the sections that shouldn’t appear in the

print PDF, such as the sidebar and top navigation bar.

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 143



Also note that there’s a output: pdf property in case you want to make some of
your content unique to PDF output. For example, you could add conditional logic
that checks whether site.output is pdf or web . If it’s pdf , then include
information only for the PDF, and so on. If you’re using nav tabs, you’ll definitely
want to create an alternative experience in the PDF.

In the configuration file, customize the values for the print_title and
print_subtitle that you want. These will appear on the title page of the PDF.

We will access this configure file in the PDF generation script.

3. Make sure your sidebar data file has titlepage.html
and tocpage.html entries
There are two template pages in the root directory that are critical to the PDF:

• titlepage.html

• tocpage.html

These pages should appear in your sidebar YML file (in this product,
mydoc_sidebar.yml):

- title:
output: pdf
type: frontmatter
folderitems:
- title:

url: /titlepage.html
output: pdf
type: frontmatter

- title:
url: /tocpage.html
output: pdf
type: frontmatter

Leave these pages here in your sidebar. (The output: pdf property means they
won’t appear in your online TOC because the conditional logic of the sidebar.html
checks whether web is equal to pdf or not before including the item in the web
version of the content.)

The code in the tocpage.html is mostly identical to that of the sidebar.html page.
This is essential for Prince to create the page numbers correctly with cross
references.

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 144



There’s another file (in the root directory of the theme) that is critical to the PDF
generation process: prince-list.txt. This file simply iterates through the items in
your sidebar and creates a list of links. Prince will consume the list of links from
prince-list.txt and create a running PDF that contains all of the pages listed, with
appropriate cross references and styling for them all.

 Note: If you have any files that you do not want to appear in the PDF, add
output: web (rather than output: pdf) in the list of attributes in your
sidebar. The prince-list.txt file that loops through the mydoc_sidebar.yml file
to grab the URLs of each page that should appear in the PDF will skip over
any items that do not list output: pdf in the item attributes. For example,
you might not want your tag archives to appear in the PDF, but you probably
will want to list them in the online help navigation.

4. Customize your headers and footers
Open up the css/printstyles.css file and customize what you want for the headers
and footers. At the very least, customize the email address
( youremail@domain.com ) that appears in the bottom left.

Exactly how the print styling works here is pretty nifty. You don’t need to
understand the rest of the content in this section unless you want to customize
your PDFs to look different from what I’ve configured. But I’m adding this
information here in case you want to understand how to customize the look and
feel of the PDF output.

This style creates a page reference for a link:

a[href]::after {
content: " (page " target-counter(attr(href), page) ")"

}

You don’t want cross references for any link that doesn’t reference another page,
so this style specifies that the content after should be blank:

a[href*="mailto"]::after, a[data-toggle="tooltip"]::after, a[hr
ef].noCrossRef::after {

content: "";
}

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 145



 Tip: If you have a link to a file download, or some other link that shouldn’t
have a cross reference (such as link used in JavaScript for navtabs or
collapsible sections, for example, add noCrossRef as a class to the link to
avoid having it say “page 0” in the cross reference.

This style specifies that after links to web resources, the URL should be inserted
instead of the page number:

a[href^="http:"]::after, a[href^="https:"]::after {
content: " (" attr(href) ")";

}

This style sets the page margins:

@page {
margin: 60pt 90pt 60pt 90pt;
font-family: sans-serif;
font-style:none;
color: gray;

}

To set a specific style property for a particular page, you have to name the page.
This allows Prince to identify the page.

First you add frontmatter to the page that specifies the type. For the
titlepage.html, here’s the frontmatter:

---
type: title
---

For the tocpage, here’s the frontmatter:

---
type: frontmatter
---

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 146



For the index.html page, we have this type tag (among others):

---
type: first_page
---

The default_print.html layout will change the class of the body element based on
the type value in the page’s frontmatter:

<body class="{% if page.type == "title"%}title{% elsif page.typ
e == "frontmatter" %}frontmatter{% elsif page.type == "first_pa
ge" %}first_page{% endif %} print">

Now in the css/printstyles.css file, you can assign a page name based on a
specific class:

body.title { page: title }

This means that for content inside of body class="title" , we can style this
page in our stylesheet using @page title .

Here’s how that title page is styled:

@page title {
@top-left {

content: " ";
}
@top-right {

content: " "
}
@bottom-right {

content: " ";
}
@bottom-left {

content: " ";
}

}

As you can see, we don’t have any header or footer content, because it’s the title
page.

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 147



For the tocpage.html, which has the type: frontmatter , this is specified in the
stylesheet:

body.frontmatter { page: frontmatter }
body.frontmatter {counter-reset: page 1}

@page frontmatter {
@top-left {

content: prince-script(guideName);
}
@top-right {

content: prince-script(datestamp);
}
@bottom-right {

content: counter(page, lower-roman);
}
@bottom-left {

content: "youremail@domain.com"; }
}

With counter(page, lower-roman) , we reset the page count to 1 so that the
title page doesn’t start the count. Then we also add some header and footer info.
The page numbers start counting in lower-roman numerals.

Finally, for the first page (which doesn’t have a specific name), we restart the
counting to 1 again and this time use regular numbers.

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 148



body.first_page {counter-reset: page 1}

h1 { string-set: doctitle content() }

@page {
@top-left {

content: string(doctitle);
font-size: 11px;
font-style: italic;

}
@top-right {

content: prince-script(datestamp);
font-size: 11px;

}

@bottom-right {
content: "Page " counter(page);
font-size: 11px;

}
@bottom-left {

content: prince-script(guideName);
font-size: 11px;

}
}

You’ll see some other items in there such as prince-script . This means we’re
using JavaScript to run some functions to dynamically generate that content.
These JavaScript functions are located in the _includes/head_print.html:

<script>
Prince.addScriptFunc("datestamp", function() {

return "PDF last generated: June 23, 2022";
});

</script>

<script>
Prince.addScriptFunc("guideName", function() {

return "Jekyll theme for documentation — mydoc product
User Guide";

});
</script>

There are a couple of Prince functions that are default functions from Prince. This
gets the heading title of the page:

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 149



content: string(doctitle);

This gets the current page:

content: "Page " counter(page);

Because the theme uses JavaScript in the CSS, you have to add the --

javascript tag in the Prince command (detailed later on this page).

5. Customize and run the PDF script
Duplicate the pdf-mydoc.sh file in the root directory and customize it for your
specific configuration files.

echo 'Killing all Jekyll instances'
kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')
clear

echo "Building PDF-friendly HTML site for Mydoc ...";
jekyll serve --detach --config _config.yml,pdfconfigs/config_my
doc_pdf.yml;
echo "done";

echo "Building the PDF ...";
prince --javascript --input-list=_site/pdfconfigs/prince-list.t
xt -o pdf/mydoc.pdf;
echo "done";

Note that the first part kills all Jekyll instances. This way you won’t try to serve
Jekyll at a port that is already occupied.

The jekyll serve command serves up the HTML-friendly PDF configurations
for our two projects. This web version is where Prince will go to get its content.

The prince script issues a command to the Prince utility. JavaScript is enabled ( --
javascript ), and we tell it exactly where to find the list of files ( --input-list )
— just point to the prince-list.txt file. Then we tell it where and what to output
( -o ).

Make sure that the path to the prince-list.txt is correct. For the output directory, I
like to output the PDF file into my project’s source (into the files folder). Then
when I build the web output, the PDF is included and something I can refer to.

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 150



 Note: You might not want to include the PDF in your project files, since
you’re likely committing the PDF to Github and as a result saving the
changes from one PDF version to another with each save.

6. Add conditions for your new builds in the PDF config
file
In the PDF configuration file, there’s a section that looks like this:

{% if site.product == "mydoc" %}
pdf_sidebar: product2_sidebar
{% endif %}

Point to the sidebar you want here.

What this does is allow the prince-list.txt and toc.html files to iterate through the
right sidebar. Otherwise, you would need to create a unique prince-list.txt and
toc.html file for each separate PDF output you have.

7. Add a download button for the PDF
You can add a download button for your PDF using some Bootstrap button code:

<a target="_blank" rel="noopener" class="noCrossRef" href="/pd
f/mydoc.pdf"><button type="button" class="btn btn-default" ari
a-label="Left Align"><span class="glyphicon glyphicon-download-
alt" aria-hidden="true"></span> PDF Download</button></a>

Here’s what that looks like:

<a target=”_blank” class=”noCrossRef” href={{ “pdf/mydoc.pdf”}}”>

 PDF Download </a>

JavaScript conflicts
If you have JavaScript on any of your pages, Prince will note errors in Terminal like
this:

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 151



error: TypeError: value is not an object

However, the PDF will still build.

You need to conditionalize out any JavaScript from your PDF web output before
building your PDFs. Make sure that the PDF configuration files have the output:

pdf property.

Then surround the JavaScript with conditional tags like this:

{% raw %}{% unless site.output == "pdf" %}
javascript content here ...
{% endunless %}

For more detail about using unless in conditional logic, see Conditional logic
(page 58). What this code means is “run this code unless this value is the case.”

Overriding Bootstrap Print Styles
The theme relies on Bootstrap’s CSS for styling. However, for print media,
Bootstrap applies the following style:

@media print{*,:after,:before{color:#000!important;text-shado
w:none!important;background:0 0!important;-webkit-box-shadow:no
ne!important;box-shadow:none!important}

This is minified, but basically the * (asterisk) means select all, and applied the
color #000 (black). As a result, the Bootstrap style strips out all color from the PDF
(for Bootstrap elements).

This is problematic for code snippets that have syntax highlighting. I decided to
remove this de-coloring from the print output. I commented out the Bootstrap
style:

@media print{*,:after,:before{/*color:#000!important;*/text-sha
dow:none!important;/*background:0 0!important*/;-webkit-box-sha
dow:none!important;box-shadow:none!important}

If you update Bootrap, make sure you make this edit. (Sorry, admittedly I couldn’t
figure out how to simply overwrite the * selector with a later style.)

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 152



I did, however, remove the color from the alerts and lighten the background
shading for pre elements. The printstyles.css has this setting.

Generating PDFs PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 153



Help APIs and UI tooltips
Summary: You can loop through files and generate a JSON file that
developers can consume like a help API. Developers can pull in
values from the JSON into interface elements, styling them as
popovers for user interface text, for example. The beauty of this
method is that the UI text remains in the help system (or at least in a
single JSON file delivered to the dev team) and isn't hard-coded into
the UI.

Full code demo of content API
You can create a help API that developers can use to pull in content.

For the full code demo, see the notes in the Tooltips file (page 0).

In this demo, the popovers pull in and display content from the information in a
tooltips.json (page 0) file located in the same directory.

Instead of placing the JSON source in the same directory, you could also host the
JSON file on another site.

Additionally, instead of tooltip popovers, you could also print content directly to
the page. Basically, whatever you can stuff into a JSON file, developers can
integrate it onto a page.

Diagram overview
Here’s a diagram showing the basic idea of the help API:

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 154

http://localhost:4010/mydoc-pdf/tooltips.html
http://localhost:4010/mydoc-pdf/tooltips.json


sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

Getting Started 
text sample help text 
sample help text sample 
help text sample help 
text sample help text 
sample help text sample 

Learning Course
sample help text sample help 
text sample help text sample 
help text sample help text 
sample help text sample help 

sample help 
text sample 
help text 
sample help 
text sample 
help text 
sample help 
text sample 

Help API

   

 pullin
g fr

om A
PI   

 

   

 p
ul

lin
g 

fr
om

 A
PI

   

 

   

 pulling from API    

   

 pulling from
 A

PI    

website #1

website #2

website #4

website #3

Is this really an API? Well, sort of. The help content is pushed out into a JSON file
that other websites and applications can easily consume. The endpoints don’t
deliver different data based on parameters added to a URL. But the overall
concept is similar to an API: you have a client requesting resources from a server.

Note that in this scenario, the help is openly accessible on the web. If you have a
private system, it’s more complicated.

To deliver help this way using Jekyll, follow the steps in each of the sections
below.

1. Create a “collection” for the help content
A collection is another content type that extends Jekyll beyond the use of pages
and posts. Call the collection “tooltips.”

Add the following information to your configuration file to declare your collection:

collections:
tooltips:

output: false

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 155



In your Jekyll project’s root directory, create a new folder called “_tooltips” and
put every page that you want to be part of that tooltips collection inside that
folder.

In Jekyll, folders that begin with an underscore (“_”) aren’t included in the output.
However, in the collection information that you add to your configuration file, if you
change output to true , the tooltips folder will appear in the output, and each
page inside tooltips will be generated. You most likely don’t want this for tooltips
(you just want the JSON file), so make the output setting false .

2. Create tooltip definitions in a YAML file
Inside the _data folder, create a YAML file called something like definitions.yml.
Add the definitions for each of your tooltips here like this:

basketball: "Basketball is a sport involving two teams of five
players each competing to put a ball through a small circular r
im 10 feet above the ground. Basketball requires players to be
in top physical condition, since they spend most of the game ru
nning back and forth along a 94-foot-long floor."

The definition of basketball is stored this data file so that you can re-use it in other
parts of the help as well. You’ll likely want the definition to appear not only in the
tooltip in the UI, but also in the regular documentation as well.

3. Create pages in your collection
Create pages inside your new tooltips collection (that is, inside the _tooltips
folder). Each page needs to have a unique id in the frontmatter as well as a
product . Then reference the definition you created in the definitions.yml file.

Here’s an example:

---
doc_id: basketball
product: mydoc
---

{{site.data.definitions.basketball}}

(Note: Avoid using id , as it seems to generate out as /tooltips/basketball

instead of just `basketball.)

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 156



You need to create a separate file for each tooltip you want to deliver.

The product attribute is required in the frontmatter to distinguish the tooltips
produced here from the tooltips for other products in the same _tooltips folder.
When creating the JSON file, Jekyll will iterate through all the pages inside
_tooltips, regardless of any subfolders included here.

4. Create a JSON file that loops through your collection
pages
Now it’s time to create a JSON file with Liquid code that iterates through our
tooltip collection and grabs the information from each tooltip file.

Inside your project’s pages directory (e.g., mydoc), add a file called “tooltips.json.”
(You can use whatever name you want.) Add the following to your JSON file:

---
layout: null
search: exclude
---

{
"entries":
[
{% for page in site.tooltips %}
{
"doc_id": "{{ page.doc_id }}",
"body": "{{ page.content | strip_newlines | replace: '\',
'\\\\' | replace: '"', '\\"' }}"
} {% unless forloop.last %},{% endunless %}
{% endfor %}
]
}

This code will loop through all pages in the tooltips collection and insert the id

and body into key-value pairs for the JSON code. Here’s an example of what that
looks like after it’s processed by Jekyll in the site build:

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 157



{
"entries": [

{
"doc_id": "baseball",
"body": "Baseball is considered America's pasttime spor

t, though that may be more of a historical term than a current
one. There's a lot more excitement about football than basebal
l. A baseball game is somewhat of a snooze to watch, for the mo
st part."

},
{

"doc_id": "basketball",
"body": "Basketball is a sport involving two teams of fiv

e players each competing to put a ball through a small circula
r rim 10 feet above the ground. Basketball requires players to
be in top physical condition, since they spend most of the gam
e running back and forth along a 94-foot-long floor."

},
{

"doc_id": "football",
"body": "No doubt the most fun sport to watch, football a

lso manages to accrue the most injuries with the players. From
concussions to blown knees, football players have short sport l
ives."

},
{

"doc_id": "soccer",
"body": "If there's one sport that dominates the world la

ndscape, it's soccer. However, US soccer fans are few and far b
etween. Apart from the popularity of soccer during the World Cu
p, most people don't even know the name of the professional soc
cer organization in their area."

}
]

}

You can also view the same JSON file here: tooltips.json (page 0).

You can add different fields depending on how you want the JSON to be
structured. Here we just have to fields: doc_id and body . And the JSON is
looking just in the tooltips collection that we created.

 Tip: Check out Google’s style guide for JSON. These best practices can
help you keep your JSON file valid.

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 158

http://localhost:4010/mydoc-pdf/tooltips.json
https://google.github.io/styleguide/jsoncstyleguide.xml


Note that you can create different JSON files that specialize in different content.
For example, suppose you have some getting started information. You could put
that into a different JSON file. Using the same structure, you might add an if tag
that checks whether the page has frontmatter that says type:

getting_started or something. Or you could put the content into separate
collection entirely (different from tooltips).

By chunking up your JSON files, you can provide a quicker lookup. (I’m not sure
how big the JSON file can be before you experience any latency with the jQuery
lookup.)

5. Build your site and look for the JSON file
When you build your site, Jekyll will iterate through every page in your _tooltips
folder and put the page id and body into this format. In the output, look for the
JSON file in the tooltips.json file. You’ll see that Jekyll has populated it with
content. This is because of the triple hyphen lines in the JSON file — this instructs
Jekyll to process the file.

6. Allow CORS access to your help if stored on a
remote server
You can simply deliver the JSON file to devs to add to the project. But if you have
the option, it’s best to keep the JSON file stored in your own help system.
Assuming you have the ability to update your content on the fly, this will give you
completely control over the tooltips without being tied to a specific release
window.

When people make calls to your site from other domains, you must allow them
access to get the content. To do this, you have to enable something called CORS
(cross origin resource sharing) within the server where your help resides.

In other words, people are going to be executing calls to reach into your site and
grab your content. Just like the door on your house, you have to unlock it so
people can get in. Enabling CORS is unlocking it.

How you enable CORS depends on the type of server.

If your server setup allows htaccess files to override general server permissions,
create an .htaccess file and add the following:

Header set Access-Control-Allow-Origin "*"

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 159



Store this in the same directory as your project. This is what I’ve done in a
directory on my web host (bluehost.com). Inside http://idratherassets.com/wp-
content/apidemos/, I uploaded a file called “.htaccess” with the preceding code.

After I uploaded it, I renamed it to .htaccess, right-clicked the file and set the
permissions to 774.

To test whether your server permissions are set correctly, open a terminal and run
the following curl command pointing to your tooltips.json file:

curl -I http://idratherassets.com/wp-content/apidemos/tooltip
s.json

The -I command tells cURL to return the request header only.

If the server permissions are set correctly, you should see the following line
somewhere in the response:

Access-Control-Allow-Origin: *

If you don’t see this response, CORS isn’t allowed for the file.

If you have an AWS S3 bucket, you can supposedly add a CORS configuration to
the bucket permissions. Log into AWS S3 and click your bucket. On the right, in
the Permissions section, click Add CORS Configuration. In that space, add the
following policy:

<CORSConfiguration>
<CORSRule>

<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>

</CORSRule>
</CORSConfiguration>

(Although this should work, in my experiment it doesn’t. And I’m not sure why…)

In other server setups, you may need to edit one of your Apache configuration
files. See Enable CORS or search online for ways to allow CORS for your server.

If you don’t have CORS enabled, users will see a CORS error/warning message in
the console of the page making the request.

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 160

http://enable-cors.org/server.html


 Tip: If enabling CORS is problematic, you could always just send
developers the tooltips.json file and ask them to place it on their own server.

7. Explain how developers can access the help
Developers can access the help using the .get method from jQuery, among
other methods. Here’s an example of how to get tooltips for basketball, baseball,
football, and soccer:

var url = "tooltips.json";

$.get( url, function( data ) {

/* Bootstrap popover text is defined inside a data-co
ntent attribute inside an element. That's

why I'm using attr here. If you just want to insert c
ontent on the page, use append and remove the data-content argu
ment from the parentheses.*/

$.each(data.entries, function(i, page) {
if (page.doc_id == "basketball") {

$( "#basketball" ).attr( "data-content", p
age.body );

}

if (page.doc_id == "baseball") {
$( "#baseball" ).attr( "data-content", pag

e.body );
}
if (page.doc_id == "football") {

$( "#football" ).attr( "data-content", pag
e.body );

}

if (page.doc_id == "soccer") {
$( "#soccer" ).attr( "data-content", pag

e.body );
}

});
});

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 161



View the tooltip demo for a demonstration. See the source code for full code
details.

The url in the demo is relative, but you could equally point it to an absolute path
on a remote host assuming CORS is enabled on the host.

The each method looks through all the JSON content to find the item whose
page.id is equal to basketball . It then looks for an element on the page

named #basketball and adds a data-content attribute to that element.

 Warning: Make sure your JSON file is valid. Otherwise, this method won’t
work. I use the JSON Formatter extension for Chrome . When I go to the
tooltips.json page in my browser, the JSON content — if valid — is nicely
formatted (and includes some color coding). If the file isn’t valid, it’s not
formatted and there isn’t any color. You can also check the JSON formatting
using JSON Formatter and Validator . If your JSON file isn’t valid, identify the
problem area using the validator and troubleshoot the file causing issues. It’s
usually due to some code that isn’t escaping correctly.

Why data-content ? Well, in this case, I’m using Bootstrap popovers to display
the tooltip content. The data-content attribute is how Bootstrap injects
popovers.

Here’s the section on the page where the popover is inserted:

<p>Basketball <span class="glyphicon glyphicon-info-sign" id="b
asketball" data-toggle="popover"></span></p>

Notice that I just have id="basketball" added to this popover element.
Developers merely need to add a unique ID to each tooltip they want to pull in the
help content. Either you tell developers the unique ID they should add, or ask
them what IDs they added (or just tell them to use an ID that matches the field’s
name).

In order to use jQuery and Bootstrap, you’ll need to add the appropriate
references in the head tags of your page:

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 162

http://localhost:4010/mydoc-pdf/tooltips.html
https://chrome.google.com/webstore/detail/json-formatter/bcjindcccaagfpapjjmafapmmgkkhgoa?hl=en
http://jsonformatter.curiousconcept.com/
http://getbootstrap.com/javascript/#popovers


<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bo
otstrap/3.3.2/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.1
1.2/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/j
s/bootstrap.min.js"></script>

<script type="text/javascript">
$(document).ready(function(){

$('[data-toggle="popover"]').popover({
placement : 'right',
trigger: 'hover',
html: true

});
</script>

Again, see the Tooltip Demo for a demo of the full code.

Note that even though you reference a Bootstrap JS script, Bootstrap’s popovers
require you to initialize them using the above code as well — they aren’t turned on
by default.

View the source code of the tooltip demo for the full comments.

8. Create easy links to embed the help in your help site
You might also want to insert the same content into different parts of your help
site. For example, if you have tooltips providing definitions for fields, you’ll
probably want to create a page in your help that lists those same definitions.

You could use the same method developers use to pull help content into their
applications. But it will probably be easier to simply use Jekyll’s tags for doing it.

Here’s how you would reuse the content:

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 163

http://localhost:4010/mydoc-pdf/tooltips.html
http://localhost:4010/mydoc-pdf/tooltips.html


<h2>Reuse Demo</h2>

<table>
<thead>
<tr>
<th>Sport</th>
<th>Comments</th>
</tr>
</thead>
<tbody>

<tr>
<td>Basketball</td>
<td>{{site.data.definitions.basketball}}</td>
</tr>

<tr>
<td>Baseball</td>
<td>{{site.data.definitions.baseball}}</td>
</tr>

<tr>
<td>Football</td>
<td>{{site.data.definitions.football}}</td>
</tr>

<tr>
<td>Soccer</td>
<td>{{site.data.definitions.soccer}}</td>
</tr>
</tbody>
</table>

And here’s the code:

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 164



Reuse Demo

Sport Comments

Basketball Basketball is a sport involving two teams of five players each
competing to put a ball through a small circular rim 10 feet above
the ground. Basketball requires players to be in top physical con-
dition, since they spend most of the game running back and forth
along a 94-foot-long floor.

Baseball Baseball is considered America's pasttime sport, though that may
be more of a historical term than a current one. There's a lot more
excitement about football than baseball. A baseball game is
somewhat of a snooze to watch, for the most part.

Football No doubt the most fun sport to watch, football also manages to
accrue the most injuries with the players. From concussions to
blown knees, football players have short sport lives.

Soccer If there's one sport that dominates the world landscape, it's soc-
cer. However, US soccer fans are few and far between. Apart from
the popularity of soccer during the World Cup, most people don't
even know the name of the professional soccer organization in
their area.

Now you have both documentation and UI tooltips generated from the same
definitions file.

Help APIs and UI tooltips PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 165



Search configuration
Summary: The search feature uses JavaScript to look for keyword
matches in a JSON file. The results show instant matches, but it
doesn't provide a search results page like Google. Also, sometimes
invalid formatting can break the JSON file.

About search
The search is configured through the search.json file in the root directory. The
search is a simple search that looks at content in pages. It looks at titles,
summaries, keywords, and tags.

However, the search doesn’t work like google — you can’t hit return and see a list
of results on the search results page, with the keywords in bold. Instead, this
search shows a list of page titles that contain keyword matches. It’s fast, but
simple.

Excluding pages from search
By default, every page is included in the search. Depending on the type of content
you’re including, you may find that some pages will break the JSON formatting. If
that happens, then the search will no longer work.

If you want to exclude a page from search add search: exclude in the page’s
frontmatter.

Troubleshooting search
You should exclude any files from search that you don’t want appearing in the
search results. For example, if you have a tooltips.json file or prince-list.txt, don’t
include it, as the formatting will break the JSON format.

If any formatting in the search.json file is invalid (in the build), search won’t work.
You’ll know that search isn’t working if no results appear when you start typing in
the search box.

If this happens, point your browser to your build’s search.json file at
http://localhost:4000/search.json (or your public github pages site), copy the
entire search.json page as it’s output on the browser, and then use a JSON
validator to validate the output by pasting what you copied into the validator.
Look for the line causing trouble. It will be highlighted. Edit the file that’s causing

Search configuration PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 166

http://jsonlint.com/
http://jsonlint.com/


the problem to either exclude it from the search or fix the syntax so that it doesn’t
invalidate the JSON. (Note that tabs in the body will invalidate JSON, as will
certain characters in the file’s front matter. For example, the summary: cannot
have “ quotes in it.

The search.json file already tries to strip out content that would otherwise make
the JSON invalid.

Including the body field in search
I’ve found that including the body field in the search creates too many problems,
and so I’ve removed body from the search. You can see the results of including
the body by adding this along with the other fields in search.json:

"body": "{{ page.content | strip_html | strip_newlines |
replace: '\', '\\\\' | replace: '"', '\\"' | replace: '
', '    '  }}",

Note that the last replace, | replace: '^t', ' ' , looks for any tab character
and replaces it with four spaces. (Tab characters invalidate JSON.) If you run into
other problematic formatting, you can use regex expressions to find and replace
the content. See Regular Expressions for details on finding and replacing code.

It’s possible that the formatting may not account for all the scenarios that would
invalidate the JSON. (Sometimes it’s an extra comma after the last item that
makes it invalid.)

Note that including the body in the search creates other problems as well. The
search results show the most immediate matches in the JSON file. If several
topics have matches for the keyword in the body, these matches might appear
before other files that have matches in the title, summary, or keywords. This is
because this simple search does not provide any weighting mechanisms for the
content.

Customizing search results
At some point, you may want to customize the search results more. Here’s a little
more detail that will be helpful. The search.json file retrieves various page values:

Search configuration PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 167

http://www.ultraedit.com/support/tutorials_power_tips/ultraedit/regular_expressions.html


---
title: search
layout: none
search: exclude
---

[
{% for page in site.pages %}
{% unless page.search == "exclude" %}
{
"title": "{{ page.title | escape }}",
"tags": "{{ page.tags }}",
"keywords": "{{page.keywords}}",
"url": "{{ page.url | remove: "/"}}",
"summary": "{{page.summary | strip }}"
},
{% endunless %}
{% endfor %}

{% for post in site.posts %}

{
"title": "{{ post.title | escape }}",
"tags": "{{ post.tags }}",
"keywords": "{{post.keywords}}",
"url": "{{ post.url }}",
"summary": "{{post.summary | strip }}"
}
{% unless forloop.last %},{% endunless %}
{% endfor %}

]

The _includes/topnav.html file then makes use of these values:

Search configuration PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 168



<li>
<!--start search-->
<div id="search-demo-container">

<input type="text" id="search-input" placeholder="searc
h...">

<ul id="results-container"></ul>
</div>
<script src="js/jekyll-search.js" type="text/javascrip

t"></script>
<script type="text/javascript">

SimpleJekyllSearch.init({
searchInput: document.getElementById('search-in

put'),
resultsContainer: document.getElementById('resu

lts-container'),
dataSource: 'search.json',
searchResultTemplate: '<li><a href="{url}" titl

e="Search configuration">{title}</a></li>',
noResultsText: 'No results found.',

limit: 10,
fuzzy: true,

})
</script>
<!--end search-->

</li>

Where you see {url} and {title} , the search is retrieving the values for these
as specified in the search.json file.

More robust search
Overall, the built-in search only works for small documentation projects. If you
have more robust search needs, consider integrating Google Custom Search ,
Algolia , or Swifttype .

Search configuration PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 169

https://cse.google.com/cse/
http://algolia.com/
http://swiftype.com/


iTerm profiles
Summary: You can set up profiles in iTerm to facilitate the build
process with just a few clicks. This can make it a lot easier to quickly
build multiple outputs.

About iTerm profiles
When you’re working with tech docs, a lot of times you have builds that push files
onto different servers, or that build the content for different environments. It can
be a hassle to type out these commands each time. Instead, it’s easier to
configure iTerm with profiles that initiate the scripts.

Set up profiles
1. Open iTerm and go to Profiles > Open Profiles.

2. Click Edit Profiles.

3. Click the + button in the lower-left corner to create a new profile.

4. In the Name field, type a name describing the output, such as Doc

theme -- designers .

5. In the Send text at start field, type the command for the build script,
such as this:

JEKYLL_ENV=production jekyll serve

Leave the Login shell option selected.

6. In the Working Directory section, select Directory and enter the directory
for your project, such as /Users/tjohnson/projects/documentation-
theme-jekyll.

7. Close the profiles panel.

Here’s an example:

iTerm profiles PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 170



iTerm profile example

Launching a profile
1. In iTerm, make sure the Toolbar is shown. Go to View > Toggle Toolbar.

2. Click the New button and select your profile.

 Tip: When you’re done with the session, make sure to click Ctrl+C.

iTerm profiles PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 171



Pushing builds to server
Summary: You can push your build to AWS using commands from
the command line. By including your copy commands in commands,
you can package all of the build and deploy process into executable
scripts.

Pushing to AWS S3
If you have the AWS Command Line Interface installed and are pushing your
builds to AWS, the following commands show how you can build and push to an
AWS location from the command line:

aws s3 cp ~/users/tjohnson/projects/mydocproject/ s3://[aws pat
h]docpath/mydocproject --recursive

aws s3 cp ~/users/tjohnson/projects/anotherdocproject2/ s3://[a
ws path]docpath/anotherdocproject --recursive

The first path in the argument is the local location; the second path is the
destination.

Pushing to a regular server
If you’re pushing to a regular server that you can ssh into, you can use scp

commands to push your build. Here’s an example:

scp -r /users/tjohnson/projects/mydocproject/ name@domain:/var/
www/html/mydocproject

Similar to the above, the first path is the local location; the second path is the
destination.

Pushing builds to server PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 172



Publishing on Github Pages
Summary: You can publish your project on Github Pages, which is a
free web hosting service provided by Github. All you need is to put
your content into a Github repo branch called gh-pages and make
this your default branch in your repo. With a Jekyll site, you just
commit your entire project into the gh-pages branch and Github
Pages will build the site for you.

Set up your Github repo
1. Make sure you have Git installed. You can download and install Git for

Windows here and Git for Mac here . If you’re on a Mac, chances are you
might already have git installed. You can check by opening up a terminal
and typing which git .

2. Go to Github.com and sign up for an account.

3. Click the + button in the upper-right corner and select New repository.

4. Name the repository something like mydoctheme.

5. Type a description..

6. Select the Initialize this repository with a README check box.

7. Add a license if desired.

8. Leave the other options at the defaults and click Create repository.

9. Click the Settings button.

10. Go to your repository’s home page, and click the branch drop-down
menu.

11. Create a new branch called gh-pages.

12. Click Settings and change the default branch to gh-pages.

13. Go back to your repository’s homepage. With the gh-pages branch
selected, copy the https clone url:

14. Open a terminal, browse to a convenient location for your project, and
type git clone https://github.com/tomjoht/myreponame.git ,
replacing the https://github.com/tomjoht/myreponame.git with
your repository’s https clone URL that you copied.

Publishing on Github Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 173

https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/mac
http://github.com/


15. Move the jekyll theme files into this new folder that you just created in the
previous step.

16. Open the _config.yml file and add the following:

url: tomjoht.github.io
baseurl: /myreponame

Change the url to your github account name, and the baseurl to your repo name.

Install Bundler
Bundler is a package manager for Ruby that will install all dependencies you might
need to build your site locally. I recommend installing Bundler through homebrew.
(Sorry, these instructions apply to Mac only.)

1. Install homebrew :

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercon
tent.com/Homebrew/install/master/install)"

2. Install Bundler:

gem install bundler

Add the github pages gem
1. In terminal, browse to your Jekyll project directory.

2. Type bundle init . This creates a Gemfile and Gemfile.lock in your
project.

3. Type open gemfile . This opens the gemfile in your default text editor.

4. Add the following in the gemfile (replacing the existing contents):

source 'https://rubygems.org'
gem 'github-pages'

Publishing on Github Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 174

http://brew.sh/


5. Run bundle install .

6. Add the new jekyll files to git: git add --all .

7. Commit the files: git commit -m "committing my jekyll theme" .

8. Push the files up to your github repo: git push .

Github Pages will now automatically build your site. Wait a minute or two, and
then visit tomjoht.github.io/yourreponame, replacing this path with your github
account and branch.

Customize your URL
You can also customize your Github URL. More instructions on this later….

Publishing on Github Pages PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 175



Knowledge-base layout
Summary: This shows a sample layout for a knowledge base. Each
square could link to a tag archive page. In this example, font icons
from Font Awesome are used for the graphics, and the layout is
pulled from the Modern Business theme. .

Here’s the sample knowledge-base style layout:

Knowledge Base Categories


Getting started

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)



Knowledge-base layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 176

http://localhost:4010/mydoc-pdf/tag_getting_started.html


Generating a list of all pages with a certain tag
If you don’t want to link to a tag archive index, but instead want to list all pages
that have a certain tag, you could use this code:

Navigation

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)


Single sourcing

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)


Formatting

Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Learn More (page 0)

Knowledge-base layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 177

http://localhost:4010/mydoc-pdf/tag_navigation.html
http://localhost:4010/mydoc-pdf/tag_single_sourcing.html
http://localhost:4010/mydoc-pdf/tag_formatting.html


Getting started pages:
<ul>
{% assign sorted_pages = site.pages | sort: 'title' %}
{% for page in sorted_pages %}
{% for tag in page.tags %}
{% if tag == "getting_started" %}
<li><a href="{{ page.url | remove: "/" }}">{{page.titl
e}}</a></li>
{% endif %}
{% endfor %}
{% endfor %}
</ul>

Here’s the result:

Getting started pages:

• About Ruby, Gems, Bundler, and other prerequisites (page 29)

• About the theme's author (page 23)

• Getting started with the Documentation Theme for Jekyll (page 3)

• Install Jekyll on Mac (page 37)

• Pages (page 45)

• Posts (page 52)

• Release notes 5.0 (page 27)

• Release notes 6.0 (page 25)

• Sidebar Navigation (page 72)

• Support (page 24)

• Supported features (page 18)

Knowledge-base layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 178



Glossary layout
Summary: Your glossary page can take advantage of definitions
stored in a data file. This gives you the ability to reuse the same
definition in multiple places. Additionally, you can use Bootstrap
classes to arrange your definition list horizontally.

You can create a glossary for your content. First create your glossary items in a
data file such as glossary.yml.

Then create a page and use definition list formatting, like this:

fractious

Like a little mischevious child, full of annoying and constant trouble.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

impertinent

Brave and courageous especially in a difficult, dangerous situation.

Here’s the code:

Glossary layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 179



fractious
: {{site.data.glossary.fractious}}

gratuitous
: {{site.data.glossary.gratuitous}}

haughty
: {{site.data.glossary.haughty}}

gratuitous
: {{site.data.glossary.gratuitous}}

impertinent
: {{site.data.glossary.intrepid}}

The glossary works well as a link in the top navigation bar.

Horizontally styled definiton lists
You can also change the definition list ( dl ) class to dl-horizontal . This is a
Bootstrap specific class. If you do, the styling looks like this:

fractious

Like a little mischevious child, full of annoying and constant trouble.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a
flagrant foul.

haughty

Proud and flaunting it. Holding your head high up like a snooty, too-good-for-
everything rich person.

gratuitous

Something that is unwarranted and uncouth, like the social equivalent of a

Glossary layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 180



flagrant foul.

impertinent

Someone acting rude and insensitive to others.

intrepid

Brave and courageous especially in a difficult, dangerous situation.

For this type of list, you must use HTML. The list would then look like this:

<dl class="dl-horizontal">

<dt id="fractious">fractious</dt>
<dd>{{site.data.glossary.fractious}}</dd>

<dt id="gratuitous">gratuitous</dt>
<dd>{{site.data.glossary.gratuitous}}</dd>

<dt id="haughty">haughty</dt>
<dd>{{site.data.glossary.haughty}}</dd>

<dt id="benchmark_id">gratuitous</dt>
<dd>{{site.data.glossary.gratuitous}}</dd>

<dt id="impertinent">impertinent</dt>
<dd>{{site.data.glossary.impertinent}}</dd>

<dt id="intrepid">intrepid</dt>
<dd>{{site.data.glossary.intrepid}}</dd>

</dl>

If you squish your screen small enough, at a certain breakpoint this style reverts to
the regular dl class.

Although I like the side-by-side view for shorter definitions, I found it problematic
with longer definitions.

Glossary layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 181



FAQ layout
Summary: You can use an accordion-layout that takes advantage of
Bootstrap styling. This is useful for an FAQ page.

If you want to use an FAQ format, use the syntax shown on the faq.html page.
Rather than including code samples here (which are bulky with a lot of nested
div tags), just look at the source in the mydoc_faq.html theme file.

Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus?

Aenean consequat lorem ut felis ullamcorper?

Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus?

Aenean consequat lorem ut felis ullamcorper?

Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue
iaculis vitae at risus?

Aenean consequat lorem ut felis ullamcorper?

FAQ layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 182



Shuffle layout
Summary: This layout shows an example of a knowledge-base style
navigation system, where there is no hierarchy, just groups of pages
that have certain tags.

 Note: The content on this page doesn't display well on PDF, but I included
it anyway so you could see the problems this layout poses if you're including
it in PDF.

All Getting Started Formatting Publishing Content types

Single Sourcing Special Layouts

Getting started

If you're getting started with
Jekyll, see the links in this
section. It will take you from the
beginning level to comfortable.

• Getting started with the
Documentation Theme
for Jekyll (page 3)

• About the theme's
author (page 23)

• About Ruby, Gems,
Bundler, and other
prerequisites (page 29)

• Install Jekyll on Mac
(page 37)

• Pages (page 45)

• Posts (page 52)

• Release notes 5.0 (page
27)

Content types

This section lists different content
types and how to work with
them.

Formatting

These topics get into formatting
syntax, such as images and
tables, that you'll use on each of
your pages:

• Tooltips (page 95)

• Alerts (page 96)

• Code samples (page
116)

• Glossary layout (page
179)

Shuffle layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 183



• Release notes 6.0 (page
25)

• Sidebar Navigation
(page 72)

• Support (page 24)

• Supported features
(page 18)

• Links (page 118)

• Icons (page 104)

• Images (page 111)

• Labels (page 117)

• Lists (page 54)

• Navtabs (page 119)

• Pages (page 45)

• Posts (page 52)

• Syntax highlighting
(page 127)

• Tables (page 123)

• Workflow maps (page
130)

• YAML tutorial in the
context of Jekyll (page
75)

Single Sourcing

These topics cover strategies for
single_sourcing. Single sourcing
refers to strategies for re-using
the same source in different
outputs for different audiences or
purposes.

• Conditional logic (page
58)

• Content reuse (page 63)

• Excluding files (page 0)

• Generating PDFs (page
141)

Publishing

When you're building, publishing,
and deploying your Jekyll site,
you might find these topics
helpful.

• Build arguments (page
137)

• 10. Configure the build
scripts (page 0)

• Generating PDFs (page
141)

• Help APIs and UI tooltips
(page 154)

Shuffle layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 184

http://localhost:4010/mydoc-pdf/mydoc_exluding_files.html
http://localhost:4010/mydoc-pdf/mydoc_build_scripts.html
http://localhost:4010/mydoc-pdf/mydoc_build_scripts.html


 Note: This was mostly an experiment to see if I could break away from the
hierarchical TOC and provide a different way of arranging the content.
However, this layout is somewhat problematic because it doesn't allow you
to browse other navigation options on the side while viewing a topic.

• Help APIs and UI tooltips
(page 154)

• iTerm profiles (page 170)

• Pushing builds to server
(page 172)

• Search configuration
(page 166)

• Themes (page 140)

Special Layouts

These pages highlight special
layouts outside of the
conventional page and TOC
hierarchy.

• FAQ layout (page 182)

• Glossary layout (page
179)

• Knowledge-base layout
(page 176)

• Shuffle layout (page 183)

• Special layouts overview
(page 0)

Shuffle layout PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 185

http://localhost:4010/mydoc-pdf/mydoc_special_layouts.html
http://localhost:4010/mydoc-pdf/mydoc_special_layouts.html


Troubleshooting
Summary: This page lists common errors and the steps needed to
troubleshoot them.

Issues building the site

Address already in use

When you try to build the site, you get this error in iTerm:

jekyll 2.5.3 | Error:  Address already in use - bind(2)

This happens if a server is already in use. To fix this, edit your config file and
change the port to a unique number.

If the previous server wasn’t shut down properly, you can kill the server process
using these commands:

ps aux | grep jekyll

Find the PID (for example, it looks like “22298”).

Then type kill -9 22298 where “22298” is the PID.

Alternatively, type the following to stop all Jekyll servers:

kill -9 $(ps aux | grep '[j]ekyll' | awk '{print $2}')

shell file not executable

If you run into permissions errors trying to run a shell script file (such as
mydoc_multibuild_web.sh), you may need to change the file permissions to make
the sh file executable. Browse to the directory containing the shell script and run
the following:

chmod +x build_writer.sh

Troubleshooting PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 186



shell file not runnable
If you’re using a PC, rename your shell files with a .bat extension.

“page 0” cross references in the PDF

If you see “page 0” cross-references in the PDF, the URL doesn’t exist. Check to
make sure you actually included this page in the build.

If it’s not a page but rather a file, you need to add a noCrossRef class to the file
so that your print stylesheet excludes the counter from it. Add
class="noCrossRef" as an attribute to the link. In the css/printstyles.css file,

there is a style that should remove the counter from anchor elements with this
class.

The PDF is blank

Check the prince-list.txt file in the output to see if it contains links. If not, you have
something wrong with the logic in the prince-list.txt file. Check the conditions.html
file in your _includes to see if the audience specified in your configuration file
aligns with the buildAudience in the conditions.html file

Sidebar not appearing

If you build your site but the sidebar doesn’t appear, check the following:

Look in your PDF config file and make sure you have a sidebar property, such as
this:

pdf_sidebar: product2_sidebar

Make sure each TOC item has an output property that specifies web or pdf.

Understanding how the theme works can be helpful in troubleshooting. The
_includes/sidebar.html file loops through the values in the _data/sidebar.yml file.
There are if statements that check whether the conditions (as specified in the
conditions.html file) are met. If the sidebar.yml item doesn’t have the right output,
then it won’t get displayed in the sidebar. It would instead get skipped.

Troubleshooting PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 187



Sidebar isn’t collapsed

If the sidebar levels aren’t collapsed, usually your JavaScript is broken
somewhere. Open the JavaScript Console and look to see where the problem is. If
one script breaks, then other scripts will break too, so troubleshooting it is a little
tricky.

Search isn’t working

If the search isn’t working, check the JSON validity in the search.json file in your
output folder. Usually something is invalid. Identify the problematic line, fix the file,
or put search: exclude in the frontmatter of the file to exclude it from search.

Troubleshooting PDF last generated: June 23, 2022

Jekyll theme for documentation — mydoc product User Guide Page 188


	
	
	Table of Contents
	Getting started with the Documentation Theme for Jekyll
	Build the Theme
	1. Download the theme
	2. Install Jekyll
	3. Install Bundler
	4. Option 1: Build the Theme (without the github-pages gem)
	4. Option 2: Build the Theme (with the github-pages gem)

	Running the site in Docker
	Configure the sidebar
	Top navigation
	Sidebar syntax
	Comments
	Relative links and offline viewing
	Page frontmatter
	Where to store your documentation topics
	Configure the top navigation
	Generating PDF
	Blogs / News
	Markdown
	Automated links
	Other instructions

	Introduction
	Overview
	Survey of features
	Getting started

	Supported features
	Supported features
	Features not available

	About the theme's author
	Support
	Release notes 6.0
	Relative links
	Subfolders for pages
	Alerts templates
	Image templates
	Automated links using Markdown formatting
	Workflow maps
	Upgrading

	Release notes 5.0
	Unique sidebars for each product
	Permalinks
	Kramdown and Rouge
	Blog feature
	Updated documentation
	Fixed errors
	Accessing the old theme

	About Ruby, Gems, Bundler, and other prerequisites
	About Ruby
	About Ruby Gems
	Rubygem package managers
	Gemfiles
	Gemfile.lock

	Install Jekyll on Mac
	Ruby and RubyGems
	Install Homebrew
	Install Ruby through Homebrew
	Install the Jekyll gem
	Installing dependencies through Bundler
	Serve the Jekyll Documentation theme
	Resolve “No Github API authentication” errors

	Install Jekyll on Windows
	Install Ruby and Ruby Development Kit
	Install the Jekyll gem
	Installing dependencies through Bundler
	Install Bundler
	Git Clients for Windows
	Serve the Jekyll Documentation theme
	Resolving Github Metadata errors

	Pages
	Where to author content
	Where to save pages
	Frontmatter
	Colons in page titles
	Page names and excluding files from outputs
	Saving pages as drafts
	Markdown or HTML format
	Page names
	Kramdown Markdown
	Automatic mini-TOCs
	Headings
	Second-level heading
	Third-level heading
	Fourth-level heading


	Headings with ID Tags
	Specify a particular page layout
	Comments

	Posts
	About posts
	Allowed frontmatter

	Lists
	Bulleted Lists
	Numbered list
	Complex Lists
	Another Complex List
	Key Principle to Remember with Lists


	Conditional logic
	About Liquid and conditional statements
	Where to store filtering values
	Conditional logic based on config file value
	Or operator
	Unless operator
	Storing conditions in the _data folder
	Specifying the location for _data
	Conditions versus includes

	Content reuse
	About content reuse
	Page-level variables

	Collections
	What are collections
	Create a collection
	Interacting with collections
	How to use collections
	Video tutorial on collections

	WebStorm Text Editor
	About text editors and WebStorm
	Remove unnecessary plugins
	Set default tab indent to 3 spaces instead of 4
	Add the Markdown Support plugin
	Enable Soft Wraps (word wrapping)
	Exclude a directory
	Set tabs to 4 spaces
	Shortcuts
	Finding files
	Identifying changed files
	Creating file templates
	Disable pair quotes

	Atom Text Editor
	Atom Shortcuts

	Sidebar Navigation
	Navgoco foundation
	Accordion sidebar feature
	Fixed position sidebar
	Opening sidebar links into external pages
	Sidebar item highlighting

	YAML tutorial in the context of Jekyll
	Overview
	YAML overview
	YAML basics
	Example 1: Simple mapping
	Example 2: Line breaks
	Example 3: Simple list
	Example 4: List items
	Regions

	Example 5: Table of contents
	Group 1
	Group 2
	Group 3

	Example 6: Variables
	Example 7: Positions in lists
	Example 8: Properties from list items at specific positions
	Example 9: Conditions
	More resources

	Tags
	Add a tag to a page
	Tags overview
	Setting up tags
	Retrieving pages for a specific tag
	Efficiency
	Empty tags?
	Remembering the right tags

	Series
	Using series for pages
	1. Create the series button
	2. Create the “next” include
	3. Add the correct frontmatter to each of your series pages
	4. Add links to the series button and next button on each page.
	Changing the series drop-down color
	Using a collection with your series

	Tooltips
	Creating tooltips

	Alerts
	About alerts
	Alerts
	Using block level tags inside the alerts
	Types of alerts available
	Callouts
	Use Liquid variables inside parameters with includes
	Markdown inside of callouts and alerts
	Validity checking
	Blast a warning to users on every page

	Icons
	Font icon options
	External icons
	See Font Awesome icons available
	Creating your own combinations
	Glyphicon icons available
	Callouts

	Images
	Image Include Template
	Inline image includes
	SVG Images

	Code samples
	Code Samples

	Labels
	About labels

	Links
	Create an external link
	Linking to internal pages

	Navtabs
	Common uses
	Navtabs demo
	Profile
	Code
	Design constraints
	Appearance in the mini-TOC
	Must use HTML
	Match up ID tags
	Set an active tab
	Sets a cookie
	Functionality to implement

	Tables
	Multimarkdown Tables
	HTML Tables
	jQuery DataTables

	Syntax highlighting
	About syntax highlighting
	Available lexers

	Workflow maps
	Workflow maps overview
	Simple workflow maps
	Complex workflow maps

	Commenting on files
	About the review process
	Add reviewers as collaborators
	Workflow
	Prose.io

	Build arguments
	How to build Jekyll sites
	Shortcuts for the build arguments
	Stop a server

	Themes
	Theme options
	Theme differences

	Generating PDFs
	PDF overview
	Demo
	1. Set up Prince
	2. Create a new configuration file for each of your PDF targets
	3. Make sure your sidebar data file has titlepage.html and tocpage.html entries
	4. Customize your headers and footers
	5. Customize and run the PDF script
	6. Add conditions for your new builds in the PDF config file
	7. Add a download button for the PDF
	JavaScript conflicts
	Overriding Bootstrap Print Styles

	Help APIs and UI tooltips
	Full code demo of content API
	Diagram overview
	1. Create a “collection” for the help content
	2. Create tooltip definitions in a YAML file
	3. Create pages in your collection
	4. Create a JSON file that loops through your collection pages
	5. Build your site and look for the JSON file
	6. Allow CORS access to your help if stored on a remote server
	7. Explain how developers can access the help
	8. Create easy links to embed the help in your help site
	Reuse Demo

	Search configuration
	About search
	Excluding pages from search
	Troubleshooting search
	Including the body field in search
	Customizing search results
	More robust search

	iTerm profiles
	About iTerm profiles
	Set up profiles
	Launching a profile

	Pushing builds to server
	Pushing to AWS S3
	Pushing to a regular server

	Publishing on Github Pages
	Set up your Github repo
	Install Bundler
	Add the github pages gem
	Customize your URL

	Knowledge-base layout
	Knowledge Base Categories
	Getting started
	Navigation
	Single sourcing
	Formatting

	Generating a list of all pages with a certain tag

	Glossary layout
	Horizontally styled definiton lists

	FAQ layout
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?
	Lorem ipsum dolor sit amet, consectetur adipiscing elit?
	Curabitur eget leo at velit imperdiet varius. In eu ipsum vitae velit congue iaculis vitae at risus?
	Aenean consequat lorem ut felis ullamcorper?

	Shuffle layout
	Troubleshooting
	Issues building the site
	Address already in use
	shell file not executable

	shell file not runnable
	“page 0” cross references in the PDF
	The PDF is blank
	Sidebar not appearing
	Sidebar isn’t collapsed
	Search isn’t working



